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ABSTRACT 

Listeria monocytogenes causes potentially fatal illness to susceptible people 
and is found in various foods. It typically enters processed foods via a 
contaminated processing environment, in which it may have persisted for 
years. To study the role of raw material as a potential source of 
contamination of food processing plants by L. monocytogenes, the 
prevalence and genetic diversity of this species in tonsils of pigs and in raw 
fish was examined. A total of 14% and 4% of tonsils of pigs and raw fish, 
respectively, harboured L. monocytogenes. From 38 pig tonsil isolates and 11 
raw fish isolates, 24 and nine different types were recovered using pulsed-
field-gel electrophoresis (PFGE) typing. The results indicate that a wide 
variety of L. monocytogenes strains enters pork slaughterhouses and fish 
processing plants in the raw materials, which are thus potential sources of 
direct or indirect contamination of processing plants by this pathogen. 

Since identical PFGE types were recovered from both raw and processed 
fish, it is likely that raw fish are an initial source of the L. monocytogenes 
found in processed fish. Some strains entering a plant along with raw fish 
may contaminate and persist in the processing environment, causing 
recurrent contamination of the final products via contact surfaces. 
Alternatively, L. monocytogenes strains in raw fish may survive non-
listericidal processes, resulting in contamination of the final product.  

To identify novel factors contributing to survival of L. monocytogenes in 
food processing environment, the roles of specific genes in stress response 
were investigated, using flhA and motA that encode flagellar factors involved 
in cold stress tolerance, and lmo0866, lmo1246, lmo1450, and lmo1722 
encoding DEAD-box RNA helicases involved in cold, heat acid, alkali, 
osmotic, ethanol, and oxidative stress tolerance. Increased relative 
transcription levels of flhA, motA, lmo0866, lmo1450, and lmo1722, 
restricted growth of the single gene deletion mutant strains EGD-eΔflhA, 
EGD-eΔmotA, Δlmo0866, Δlmo1450, and Δlmo1722 at 3°C, and increased 
minimum growth temperatures of Δlmo0866, Δlmo1450, and Δlmo1722 
revealed that FlhA, MotA, Lmo0866, Lmo1450, and Lmo1722 had roles in 
growth of L. monocytogenes EGD-e under cold stress conditions. The 
restricted growth of Δlmo0866 in 3.5% ethanol, and its increased maximum 
growth temperature and growth rate at 42.5°C, indicated that Lmo0866 had 
roles also in ethanol and heat stress tolerance of strain EGD-e. The role of 
Lmo1450 in the growth of strain EGD-e under heat, alkali, and oxidative 
stress conditions was shown by the restricted growth rate of Δlmo1450 at 
42.5°C, in pH 9.4, and in 5 mM H2O2. The slightly decreased growth rate and 
maximum optical density of Δlmo1246 at 3°C indicated that the role of 
Lmo1246 in cold stress tolerance was negligible. Under all the other 
conditions, the growth of Δlmo1246 and the wild-type EGD-e were identical, 
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suggesting that Lmo1246 had no role in growth of L. monocytogenes EGD-e 
under heat, pH osmotic, ethanol, or oxidative stress conditions. 

The deletion of flhA, motA, lmo0866, lmo1450, and lmo1722 impaired the 
motility of strain EGD-e, whereas the motility of Δlmo1246 did not differ 
from that of the wild type. This indicates that DEAD-box RNA helicases 
Lmo0866, Lmo1450, and Lmo1722 have roles in motility of strain EGD-e. 
Moreover, these results suggest that motility and cold stress tolerance of L. 
monocytogenes are linked, and that motile flagella may be needed for full 
cold stress tolerance of strain EGD-e. 
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1 INTRODUCTION 

The history of the zoonotic foodborne pathogen Listeria monocytogenes and 
listeriosis is traced to 1910, when a gram-positive bacterium was isolated 
from the necrotic liver of a rabbit in Sweden (Hülpfers, 1911). In 1918 the 
bacterium, albeit wrongly identified, was isolated from a human patient with 
meningitis (Dumont & Cotoni, 1921). The description of the bacterium, 
named as Bacterium monocytogenes, was published by Murray et al. in 
1926. The name Listeria monocytogenes was established in 1940 (Pirie, 
1940). Even though food as a significant source of listeriosis was suspected 
already in 1961 by Seeliger, the emergence of L. monocytogenes as an 
important foodborne pathogen became evident in 1980s, after several 
foodborne outbreaks proved to be caused by it (Schlech et al., 1983; Fleming 
et al., 1985; Linnan et al., 1988).  

In Europe, Australia, and the USA, approximately 0.3 listeriosis cases per 
100 000 population are reported annually and the worldwide incidence 
seems to be increasing (Denny & McLauchlin, 2008; OzFoodNet Working 
Group, 2010; Dalton et al., 2011; Silk et al., 2012). In Finland, the incidence 
of listeriosis is clearly higher. Between 2008 and 2012, the incidence varied 
from 0.64 to 1.33 cases per 100 000 population, resulting in listeriosis in 
34─71 citizens annually (Terveyden ja hyvinvoinnin laitos, THL, 2012). Even 
though listeriosis, mainly affecting people with another severe underlying 
disease, is rare compared to many other foodborne diseases, its severity and 
the economic losses resulting from massive recalls of contaminated foods 
make L. monocytogenes one of the most important foodborne pathogens in 
industrialized countries nowadays (Mead et al., 1999; de Valk et al., 2005; 
Vaillant et al., 2005; Scallan et al., 2011).  

Foods may be contaminated with L. monocytogenes already before 
harvest, but the main source of contamination of processed foods has been 
reported to be endogenous strains that may have persisted at food-
processing plants for years (Ericsson et al., 1997; Autio et al., 1999; 
Miettinen et al., 1999a; Fonnesbech Vogel et al., 2001; Keto-Timonen et al., 
2007). Detergents and disinfectants used for sanitizing the processing 
environment as well as processing, preservatives, additives, and storage of 
foods, may cause stress to the bacterium. Survival under these stresses 
improves its persistence in food processing environment and increases its 
occurrence in foods. Especially its ability to tolerate cold stress and thus grow 
in refrigerated conditions threatens the hygienic quality of foods stored for 
extended periods at low temperatures (Junttila et al., 1988; Nolan et al., 
1992; Hudson et al., 1994). 

To efficiently control L. monocytogenes and decrease the number of 
listeriosis cases, the contamination routes in the food chain need to be 
identified. The aim of this study was to examine the role of raw material as a 
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source of L. monocytogenes in food-processing plants. Moreover, the role of 
flagellar factors FlhA and MotA, and DEAD-box RNA helicases Lmo0866, 
Lmo1246, Lmo1450, and Lmo1722 in the tolerance of L. monocytogenes 
EGD-e to various stresses the bacterium may meet in food chain was studied. 
Understanding mechanisms behind stress tolerance may provide new insight 
into the control of L. monocytogenes and listeriosis.   
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2 REVIEW OF THE LITERATURE 

2.1 Listeria monocytogenes and listeriosis 

The foodborne zoonotic pathogen, L. monocytogenes, is a mesophilic, 
facultatively anaerobic, gram-positive bacterium widespread in nature. It is 
able to grow in a wide temperature, pH, and water activity (aw) range, 
whereas heating to 60˚C for 30 min kills it (Gray & Killinger, 1966; Nolan et 
al., 1992; Hudson et al., 1994; McLaughlin & Rees, 2009). As an 
opportunistic pathogen, L. monocytogenes causes a disease, listeriosis, 
mainly in susceptible people or animals with increased risk because of severe 
underlying disease or pregnancy.  

2.1.1 Listeria monocytogenes 
L. monocytogenes belongs to the family Listeriaceae in the class Bacilli of 
the phylum Firmicutes, together with L. innocua, L. ivanovii, L. seeligeri, L. 
welchimeri, L. grayi (McLaughlin & Rees, 2009), and four novel species L. 
rocourtiae (Leclercq et al., 2010), L. marthii (Graves et al., 2010), L. 
fleischmannii (Bertsch et al., 2013), and L. weihenstephanensis (Lang Halter 
et al., 2013). All Listeria species are small, regular rods, 0.5 μm in diameter 
and 1─5 μm in length that do not form spores or capsula. They produce 
catalase but not oxidase. Except for L. fleischmannii, Listeria spp. are motile 
with peritrichous flagella under 30˚C (McLaughlin & Rees, 2009; Graves et 
al., 2010; Leclercq et al., 2010; Bertsch et al., 2013; Halter et al., 2013). L. 
monocytogenes is β-haemolytic and ferments rhamnose but not xylose 
(McLaughlin & Rees, 2009). 

Based on cell surface antigens, L. monocytogenes strains are divided into 
13 serotypes (McLaughlin & Rees, 2009). To further characterize it, 
genotyping methods, for example pulsed-field gel electrophoresis (PFGE) 
typing, ribotyping, and amplified fragment length polymorphism (AFLP) 
typing that are based on differences in DNA sequences can be used. PFGE, 
ribo and AFLP types are grouped into four genetic lineages with varying 
distribution and properties of L. monocytogenes (Nightingale, 2010) (Table 
1).   

L. monocytogenes has been found in decaying vegetation, cultivated and 
non-cultivated fields, forests, aquatic environments, food, feed, animal and 
human faeces, and food-processing environments (Weis & Seeliger, 1975; 
Low & Donachie, 1997; Giovannacci et al., 1999; Chasseignaux et al., 2001; 
Gudbjörnsdóttir et al., 2004; Berzins et al., 2010). Growth has been reported 
to occur in temperatures from -1.5˚C to approximately 45˚C, at pH of 
4.3─9.6, and in aw down to 0.90 (Gray & Killinger, 1966; Nolan et al., 1992; 
Hudson et al., 1994). It grows well in aerobic conditions, but restriction of 
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oxygen enhances its growth (Lungu et al., 2009). Despite its tolerance to 
wide ranged temperature, pH, and aw, L. monocytogenes is relatively 
fastidious in nutrient requirements and competing microbes inhibit its 
growth (Premaratne et al., 1991; Al-Zeyara et al., 2011). 

 Distribution of clinical and environmental Listeria monocytogenes isolates Table 1.
between genetic lineages. 

Genetic lineage Serotype Distribution 
I 1/2a, 1/2c, 

3a, 3c 
Dominates among foods and food-associated environments. 
Dominates as a cause of sporadic listeriosis cases in several 
European countries and in Canada. 

II 1/2b, 3b, 4b, 
4d, 4e 

Serotypes 1/2b and 4b are responsible for most listeriosis 
outbreaks worldwide. 
Dominates as a cause of sporadic listeriosis cases in the USA 
and Taiwan. 

III 4a, 4b, 4c Rare isolates. More common as causes of animal than human 
listeriosis. 

IV 4a, 4b, 4c, 7 Rare isolates. More common as causes of animal than human 
listeriosis. 

Derived from Doumith et al. (2004), Liu et al. (2006a), Clark et al. (2010), Nightingale (2010), Orsi 
et al. (2011), and Pontello et al. (2012).  

2.1.2 Listeriosis 
In susceptible people and animals L. monocytogenes can cause a life-
threatening, invasive disease (Vázquez-Boland et al., 2001; Silk et al., 2012). 
The main predisposing factor is a decrease in cell-mediated immunity 
because of underlying disease or pregnancy, and the risk of listeriosis is 
increased also in neonates and the elderly (Wilesmith & Gitter, 1986; 
Unanue, 1997; Painter & Slutsker, 2007; Denny & McLauchlin, 2008; Dalton 
et al., 2011; Silk et al., 2012). About 20% of invasive listeriosis cases are fatal 
(Vázquez-Boland et al., 2001; Silk et al., 2012). In immunocompetent adults, 
the disease is rare and symptoms are typically mild. 

Human listeriosis 
In humans, 99% of listeriosis cases are foodborne (Mead et al., 1999). Most 
cases are sporadic, leading to meningitis, encephalitis, sepsis, and abortion, 
and reported in people with another severe underlying disease (Denny & 
McLauchlin, 2008; Dalton et al., 2011; Pouillot et al., 2012; Silk et al., 2012). 
Physiological reduction in cell-mediated immunity in pregnant women may 
result in listeriosis with influenza-like symptoms and miscarriages (Silver, 
1998). In people with no predisposing factors, invasive listeriosis is rare, and 
the most typical symptom is mild gastroenteritis with fever, headache, 
nausea, diarrhoea, and abdominal pain (Miettinen et al., 1999b; Ooi & 
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Lorber, 2005; Goulet et al., 2012). Cutaneous and eye infections have rarely 
been reported, mainly in farmers and veterinarians in direct contact with 
afterbirths and infected foetuses (McLauchlin & Low, 1994; Regan et al., 
2005; Tay et al., 2008). About 1% of asymptomatic humans occasionally 
excrete L. monocytogenes in their feces (Lamont & Postlethwaite, 1986; Grif 
et al., 2001, 2003). 

Vehicles of sporadic listeriosis cases usually remain unknown, at least 
partly because of the time lag between consumption of contaminated food 
and the appearance of symptoms, along with host-specific differences in 
sensitivity to listeriosis. In listeriosis outbreaks, the most commonly 
incriminated vehicles have been ready-to-eat (RTE) meat and dairy products 
(Lundén et al., 2004; Swaminathan & Gerner-Smidt, 2007). Contaminated 
sandwiches were suspected to have caused several small outbreaks (Centers 
for Disease Control and Prevention, 2011; Gaul et al., 2012; Little et al., 2012; 
Yde et al., 2012). One of the largest listeriosis outbreaks, affecting 147 
persons in 2011, was caused by contaminated cantaloupe (Centers for 
Disease Control and Prevention, CDC, 2013).  

The development of listeriosis seems to be dose-dependent (Miettinen et 
al., 1999b; Maijala et al., 2001; Ooi & Lorber, 2005). Prolonged consumption 
of food contaminated with as few as 14─2.2 x 103 colony forming units of L. 
monocytogenes per day may be sufficient to infect susceptible people 
(Maijala et al., 2001). The clinical symptoms of invasive listeriosis typically 
begin 20─30 days after the ingestion, even though incubation period can be 
up to 72 days (Linnan et al., 1988; Vázquez-Boland et al., 2001). In non-
susceptible people, food containing 1.9 x 105 colony forming units/g has been 
reported to cause gastroenteritis, although clearly higher infectious doses 
have also been reported (Dalton et al., 1997; Miettinen et al., 1999b; 
Vázquez-Boland et al., 2001; Ooi & Lorber, 2005). Symptoms of 
gastroenteritis typically begin 24 hours after ingestion of the bacterium 
(Miettinen et al., 1999b; Vázquez-Boland et al., 2001; Ooi & Lorber, 2005).  

In the stomach, the bacterium is exposed to low gastric pH, which reduces 
the number of viable cells (Schlech et al., 1993; Vázquez-Boland et al., 2001). 
The surviving cells pass into the intestine, passively cross the intestinal wall, 
proliferate mainly in Payers patches, and spread to neighbouring enterocytes 
basolaterally (Pron et al., 1998; Vázquez-Boland et al., 2001; Ooi & Lorber, 
2005). The massive invasion of L. monocytogenes to epithelial cells is 
thought to cause the symptoms of gastroenteritis (Vázquez-Boland et al., 
2001; Ooi & Lorber, 2005). Following passage through the intestinal barrier, 
the bacterium enters the liver and, less extensively, the mesenteric lymph 
nodes and spleen through the lymph and blood (Marco et al., 1992; Pron et 
al., 1998; Vázquez-Boland et al., 2001; Melton-Witt et al., 2012). Kuppfer 
cells destroy most of the L. monocytogenes cells, and surviving cells start to 
proliferate and spread into hepatocytes (Cheers et al., 1978; Ebe et al., 1999; 
Gregory & Liu, 2000). In healthy humans, the immune system destroys L. 
monocytogenes in the liver (Cheers et al., 1978; Mielke et al., 1988; Gregory 
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& Liu, 2000). Disturbed cell-mediated immunity may enable the passage of 
the bacterium from the liver to the central nervous system and placenta, 
leading to the appearance of symptoms of invasive listeriosis (Cheers et al., 
1978; Mielke et al., 1988; Gregory & Liu, 2000; Vázquez-Boland et al., 2001).  

Exceptionally, other Listeria spp. have been reported to cause human 
listeriosis (Perrin et al., 2003; Rapose et al., 2008; Guillet et al., 2010). In 
these cases, symptoms have been similar to those of invasive listeriosis cases 
caused by L. monocytogenes (Rocourt et al., 1986; Vázquez-Boland et al., 
2001; Perrin et al., 2003; Rapose et al., 2008; Guillet et al., 2010).  

Listeriosis in animals 
Listeriosis has been detected in nearly all domestic animals (Gray & 
Killinger, 1966). Most listeriosis cases have been reported in sheep, among 
which L. ivanovii is also a significant cause of listeric infections, and also 
cows and goats, causing encephalitis, abortion, or septicemia (Beauregard & 
Malkin, 1971; Wilesmith & Gitter, 1986; Alexander et al., 1992; Low & 
Donachie, 1997; Chand & Sadana, 1999; Wesley et al., 2002). In sheep and 
cows, subclinical mastitis and gastroenteritis caused by L. monocytogenes 
have also been reported (Jensen et al., 1996; Clark et al., 2004; Rawool et al., 
2007).  

In monogastric animals, listeriosis is rare, and large epidemics with 
generalized listeriosis and acute deaths have been reported only in farmed 
chinchillas (Finley & Long, 1977; Wilkerson et al., 1997; Wesley, 2007). In 
swine, the primary manifestation of listeriosis is septicemia, whereas in 
horses, abortions and encephalitis are also typical (Wesley, 2007). Listeriosis 
of fowls is probably secondary to viral infections, and typically causes 
septicemia with accompanying cardiac lesions (Cummins et al., 1988; 
Wesley, 2007).  

Pathogenesis of Listeria spp. in fish differs from that in other animals. L. 
monocytogenes is less pathogenic to fish than to mice, wherease L. innocua, 
L. ivanovii, L. seeligeri, and L. welchimeri, which have little or no virulence 
in mammals, are virulent in fish (Menudier et al., 1996).  

In livestock, listeriosis is associated with indoor housing and consumption 
of bad quality feed, especially silage (Wilesmith & Gitter, 1986; Wiedmann et 
al., 1996; Wesley, 2007). The sensitivity of pregnant animals to listeriosis has 
led to epidemics in which the only symptoms were abortions (Wilesmith & 
Gitter, 1986).  

Symptomless faecal carriage of L. monocytogenes has been reported in 
primates, other mammals, and birds (Husu, 1990; Iida et al., 1991; Miettinen 
& Wirtanen, 2006; Ho et al., 2007; Lyautey et al., 2007; Hellström et al., 
2008; Esteban et al., 2009). The highest prevalence, up to 30%, has been 
reported in cattle followed by other ruminants, whereas companion animals 
seldom carry this species (Embil et al., 1984; Husu, 1990; Iida et al., 1991; 
Lyautey et al., 2007; Esteban et al., 2009). 
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2.2 L. monocytogenes in foods and in food-processing 
environments 

This bacterium has been found in numerous raw and processed foods. The 
presence of low numbers of L. monocytogenes in fresh produce or in 
products that are cooked before consumption is considered as safe. 
Contamination of RTE foods that enable its growth during a long shelf life 
may pose a risk of listeriosis to consumers.  

Contamination of processed foods is typically caused by strains that have 
persisted in the processing environment for extended periods (Lawrence & 
Gilmour, 1995; Rørvik et al., 1995; Autio et al., 1999; Giovannacci et al., 
1999; Miettinen et al., 1999a). It is unclear how L. monocytogenes strains 
enter the plant and why some strains persist in food processing 
environments.   

2.2.1 L. monocytogenes in foods   
The prevalence of L. monocytogenes in carcasses and raw foods varies 
greatly (Table 2). The highest prevalences have been reported in poultry 
carcasses and poultry meat, whereas in most studies it is relatively seldom 
found in beef and pork carcasses, raw milk, and fresh produce. The most 
commonly contaminated RTE foods of animal origin have been reported to 
be fermented, air-dried, or cold-smoked meat and fish products that have not 
undergone heat treatment that reduces the occurrence of the bacterium 
(Table 3).  

The prevalence of L. monocytogenes in foods increases during processing 
(Eklund et al., 1995; Lawrence & Gilmour, 1995; Rørvik et al., 1995; Autio et 
al., 1999; Berzins et al., 2010). Several studies have shown that the main 
strains contaminating the final products originate from the processing 
environments and are different from the strains present in raw material 
(Lawrence & Gilmour, 1995; Rørvik et al., 1995; Autio et al., 1999; 
Giovannacci et al., 1999). Brining by injection has been associated with L. 
monocytogenes contamination of cold-smoked pork (Berzins et al., 2007). 
Complex processing machines in contact with large product surfaces, 
including cutting, brining, and slicing machines, efficiently spread the 
contamination to the many products of a particular plant (Autio et al., 1999; 
Berzins et al., 2010). When the process does not include heat treatment, raw 
material may also serve as a direct source of contamination of the final 
products (Keto-Timonen et al., 2007). 
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 Prevalence of Listeria monocytogenes in carcasses and raw foods in Europe. Table 2.

Sample No. of positive 
samples/total (%) 

Country of origin Reference 

Carcasses    
     Beef 10/406 (2) Poland Wieczorek et al., 2012 
 1/14 (7) Italy Peccio et al., 2003 
 0/200 (0) Ireland Madden et al., 2001 
    11/50(22) Belgium Korsak et al., 1998 
 0/20 (0) The Netherlands van den Elzen & Snijders, 1993 
     Pork 2/359 (1) Finland Hellström et al., 2010 
 6/50 (12) Finland Autio et al., 2000 
 1/49 (2) Belgium Korsak et al., 1998 
 0/960 (0) Sweden, Norway Nesbakken et al., 1994 
 4/90 (4) The Netherlands van den Elzen & Snijders, 1993 
     Poultry 38/100 (38)a Greece Sakaridis et al., 2011 
 75/150 (50) Norway Rørvik et al., 2003 
 15/100 (15) Spain Capita et al., 2001 
 152/635 (24) Belgium, France Uyttendaele et al., 1997 
 103/320 (32) Denmark Ojeniyi et al., 1996 
Raw meat    
     Beef 3/190 (2) Germany Meyer et al., 2011 
 8/125 (6) Bulgaria Karakolev, 2009 
 12/94 (13) The Netherlands van den Elzen & Snijders, 1993 
     Pork 6/179 (3) Germany Meyer et al., 2011 
 6/122 (5) Bulgaria Karakolev, 2009 
 41/121 (34) France Thevenot et al., 2005 
 13/34 (38) Greece Samelis, 1999 
 107/296 (36) The Netherlands van den Elzen & Snijders, 1993 
     Poultry 167/231 (72) Estonia Praakle-Amin et al., 2006 
 57/158 (36) Spain Vitas & Garcia-Jalon, 2004 
 48/95 (51) Norway Rørvik et al., 2003 
 14/80 (18) Ireland Soultos et al., 2003 
 38/61 (62) Finland Miettinen et al., 2001 
 13/17 (76) Greece Samelis, 1999 
 112/410 (27) Belgium, France Uyttendaele et al., 1997 
Raw fish 15/103 (15)b Finland Miettinen & Wirtanen, 2005 
 15/33 (35) UK Dauphin et al., 2001 
 16/217 (7) Norway, Faroe Islands Fonnesbech Vogel et al., 2001 
 0/26 (0) Italy Pourshaban et al., 2000 
 1/60 (2) Finland Autio et al., 1999 
Raw milk    
     Cow 10/183 (5) Finland Ruusunen et al., 2013 
 25/1459 (2) France Meyer-Broseta et al., 2003 
 3/294 (4) Sweden Waak et al., 2002 
 28/774 (1) Spain Gaya et al., 1998 
Fresh produce 0/314 (0) Austria Wagner et al., 2007 
 21/720 (2) Ireland Francis & O'Beirne, 2006 
 88/2950 (3) UK Sagoo et al., 2003 
 2/3200 (0.06) UK Sagoo et al., 2001 
 82/350 (23) Denmark Nørrung et al., 1999 

aEach sample contained neck skins from three carcasses. 
bEach sample contained five fish. 
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 Prevalence of Listeria monocytogenes in ready-to-eat meat, fish and dairy Table 3.
products in Europe. 

Sample No. of positive 
samples/total (%) 

Country Reference 

Meat products    
     Heat-treated 5/460 (1) Sweden Lambertz et al., 2012 
 0/65 (0) Latvia Berzins et al., 2009 
 3/166 (2) Spain Cabedo et al., 2008 
 13/139 (9) Greece Angelidis & Koutsoumanis, 2006 
    15/255 (6) Switzerland Jemmi et al., 2002 
 658/7581 (9) Denmark Nørrung et al., 1999 
     Fermented, air-dried   23/112 (21) Italy Di Pinto et al., 2010 
     or cold-smokeda 37/117 (32) Latvia Berzins et al., 2009 
 120/312 (38) Latvia and 

Lithuania 
Berzins et al., 2007 

      4/49 (8) Greece Angelidis & Koutsoumanis, 2006 
 25/274 (9) Switzerland Jemmi et al., 2002 
 134/685 (20) Denmark Nørrung et al., 1999 
Poultry products    
     Heat-treated 0/5 (0) Latvia Berzins et al., 2009 
 7/103 (7) Spain Cabedo et al., 2008 
 0/25 (0) Greece Angelidis & Koutsoumanis, 2006 
 4/55 (7) Denmark Ojeniyi et al., 2000 
 17/528 (3) UK Nichols et al., 1998 
Fish products    
     Hot-smoked 2/113 (2) Sweden Lambertz et al., 2012 
 57/471 (12) Switzerland Jemmi et al., 2002 
 1/48 (2) Finland  Johansson et al., 1999 
     Cold-smoked 32/206 (16) Sweden Lambertz et al., 2012 
 104/1010 (10) France Beaufort et al., 2007 
 114/814 (14) Switzerland Jemmi et al., 2002 
 46/356 (13) Finland Hatakka et al., 2002 
 10/232 (4) Finland Hatakka et al., 2001 
 59/1000 (6) Denmark Fonnesbech Vogel et al., 2001 
 38/170 (22) Spain Dominguez et al., 2001 
     Gravad 28/194 (14) Sweden Lambertz et al., 2012 
 5/82 (6) Finland Hatakka et al., 2001 
 16/32 (50) Finland Johansson et al., 1999 
 51/176 (29) Denmark  Jørgensen & Huss, 1998 
Dairy products    
     Cheese 2/518 (0.4) Sweden Lambertz et al., 2012 
 1/73 (1) Norway Jakobsen et al., 2011 
 2/294 (0.7) Italy Di Pinto et al., 2010 
 47/2132 (2) Italy Prencipe et al., 2010 
 1/287 (0.3) Spain Cabedo et al., 2008 
     Ice cream 6/1129 (0.5) Finland Miettinen et al., 1999 
 2/150 (2) UK Greenwood et al., 1991 
 0/82 (0) Spain Cabedo et al., 2008 

aTreatments do not contain heating to listericidal temperature. 
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2.2.2 L. monocytogenes in food-processing environments 
In addition to raw and processed foods, equipment, contact and noncontact 
surfaces, and protecting clothing of employees in various food-processing 
plants have been proven to be contaminated with L. monocytogenes (Autio et 
al., 1999; Giovannacci et al., 1999; Miettinen et al., 1999a; Chasseignaux et 
al., 2001; Keto-Timonen et al., 2007; Berzins et al., 2010). The most heavily 
contaminated objects have been complex equipment in contact with large 
product surfaces, such as coolers, conveyers, and cutting, slicing, and brining 
machines that are often difficult to clean, so they can maintain the 
contamination in factories despite regular cleaning and disinfecting (Autio et 
al., 1999; Miettinen et al., 1999a; Lundén et al., 2003b; Keto-Timonen et al., 
2007; Berzins et al., 2010).  

L. monocytogenes may persist in food-processing plant for years (Rørvik 
et al., 1995; Miettinen et al., 1999a; Keto-Timonen et al., 2007). Persistent 
contamination is typically caused by a few strains recurrently isolated from 
the same or changing sampling sites, in the presence of a background of 
several other sporadically occurring strains (Giovannacci et al., 1999; 
Miettinen et al., 1999a; Lundén et al., 2003b; Keto-Timonen et al., 2007; 
Berzins et al., 2010). Persistent strains have been reported to tolerate 
particular disinfectants better than sporadic strains (Aase et al., 2000; 
Lundén et al., 2003a), possibly because the persistent strains attach more 
firmly to surfaces that contact food (Norwood & Gilmour, 1999; Lundén et 
al., 2000; Latorre et al., 2011). Attached cells tolerate mechanical and 
chemical cleaning and disinfecting better than free-living cells (Norwood & 
Gilmour, 2000; Mah & O'Toole, 2001; Renier et al., 2011). The adherence of 
L. monocytogenes enables the formation of a biofilm, a surface-attached 
microbial community in which the resistance and persistence of the 
organism in food production lines is increased (O'Toole et al., 2000; Renier 
et al., 2011). The biofilm-forming ability of strains varies, with some strains 
being able to form three-dimensional mushroom-shaped biofilms, while 
others produce sparse aggregates or monolayers (Chae & Schraft, 2000; 
Kalmokoff et al., 2001; Borucki et al., 2003). Surface material, 
environmental condition, and the presence of other bacteria affect the 
survival of L. monocytogenes in a biofilm (Bremer et al., 2001; Midelet & 
Carpentier, 2002; Nilsson et al., 2011; Bae et al., 2012b; Kostaki et al., 2012).  

Contamination may enter the processing plant from multiple sources, and 
the main source has been suspected to be raw material (Lawrence & Gilmour, 
1995; Ojeniyi et al., 1996; Giovannacci et al., 1999; Katzav et al., 2006; 
Berzins et al., 2010; Hellström et al., 2010). Several studies, however, have 
shown that raw material was free of L. monocytogenes, or that different L. 
monocytogenes strains were found in the raw materials and in the processing 
environment or processed foods (Rørvik et al., 1995; Autio et al., 1999; 
Hoffman et al., 2003). Other possible contamination sources could be 
personnel, pests, insects, and soil (Iida et al., 1991; El-Shenawy, 1998; 
Sauders et al., 2005; Schoder & Wagner, 2011; Pava-Ripoll et al., 2012). 
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Persistent contamination has been attributed to the transfer of processing 
machinery between food processing plants (Lundén et al., 2002).  

2.3 Stress responses of L. monocytogenes 

In foods and in food-processing environments, L. monocytogenes is exposed 
to various stresses that cause changes in cellular components and reactions, 
thus decreasing its viability. The severity of the stress determines whether 
the bacterium is killed or its growth is restricted, while the type of stress 
determines the mechanism by which these responses happen.  

L. monocytogenes may escape unfavourable environmental conditions by 
“swimming” toward more favourable locations, or it may adjust to the 
adverse condition (Mitchell & Kogure, 2006; Marles-Wright & Lewis, 2007). 
During stress adaptation, changes take place to maintain structural integrity 
of the cell and to keep important systems functioning (Berry & Foegeding, 
1997; Beales, 2004), including changes in morphology, protein synthesis and 
structure, nutrient uptake, and concentration of intracellular metabolites. 
Different stresses have different effects on L. monocytogenes and thus 
induce different responses, although there are some common alterations in 
cell structure and function (Duché et al., 2002a; Gardan et al., 2003a; Chan 
et al., 2007; van der Veen et al., 2007; Giotis et al., 2008b; Cacace et al., 
2010). A complex regulatory network harmonizes the expression of the 
stress-associated genes according to the existing conditions (Kazmierczak et 
al., 2006; Kamp & Higgins, 2009; Ollinger et al., 2009; Toledo-Arana et al., 
2009; Chaturongakul et al., 2011). 

2.3.1 Stressors present in food chain  
The modern food industry aims to decrease the use of preservatives and to 
increase shelf lives, so food safety is widely based on the cold chain. Even 
though temperatures lower than optimum decrease growth rates in all 
bacteria, growth inhibition of L. monocytogenes is not complete until 
temperatures below 0°C (Junttila et al., 1988; Hudson et al., 1994). 
Pasteurizing and cooking destroy this species, but it may survive heat stress 
caused by mild thermal processing (Doyle et al., 2001).  

Low pH restricts the growth of L. monocytogenes in fermented foods and 
it is subjected to acid stress also while passing through the stomach and in 
the phagosomes (de Chastellier & Berche, 1994). In the small intestine it is 
exposed to alkaline pancreatic secretions, and residues of alkaline detergents 
used in food-processing plants can cause sublethal stress.  

Decrease in aw due to either decreased water content (desiccation) or 
increased solute content (adding salt or sugar), causing dehydration and 
osmotic stress, has long been used to preserve foods. Naturally existing or 
added ethanol preserves foods and drinks, and it is used also as disinfectant 
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in food-processing plants together with other alcohols, quaternary 
ammonium compounds, peroxides, and halogens, that may cause stress to L. 
monocytogenes if only sub-lethal concentrations are reached in food-contact 
surfaces or if residues remain in the contaminated food (Ryan et al., 2008). 
Peroxides such as H2O2, and other agents containing reactive oxygen species 
(ROS), cause oxidative stress similar to that used by phagosomes to kill 
engulfed pathogens. The mechanisms of action of stressors present in the 
food chain are represented in Table 4. 

 Mechanisms of growth inhibition in bacteria by stressors present in the food Table 4.
chain. 

Stressor Mechanisms of growth inhibition Reference 
Low temperature Hindered membrane-associated cellular functions due to 

decreased fluidity, slowing of cell metabolism, 
decelerated reaction kinetics, increased stability of DNA 
and RNA secondary structures, hampered function of 
ribosomes.  

VanBogelen & Neidhardt, 
1990; Yamanaka et al., 
1998; Hebraud & Potier, 
1999; Bayles et al., 2000; 
Tasara & Stephan, 2006 

High temperature Denaturation of proteins and enzymes, DNA damage, 
degradation of rRNA. Damage of cytoplasmic membrane 
increases leakage of cellular components. 

Yamanaka et al., 1998; 
Russell, 2003; Al-Qadiri et 
al., 2008 

Acid Disturbed function of enzymes and cellular bioenergetics, 
damage of the cell membrane and DNA. 

Zilberstein et al., 1984; 
Cotter & Hill, 2003; Moorman 
et al., 2008; Krulwich et al., 
2011 

Alkali Disturbed function of enzymes and cellular bioenergetics. 
Disruption of cell membrane and leakage of intracellular 
contents. Disturbed cell division. 

Zilberstein et al., 1984; 
Sampathkumar et al., 2003; 
Giotis et al., 2007; Krulwich 
et al., 2011 

Low aw Dehydration of the cell, loss of turgor pressure, inhibition 
of nutrient uptake and other essential cellular functions. 

Kempf & Bremer, 1998; 
Beales, 2004  

Ethanol Increased permeability of cell membrane, denaturation of 
proteins, and altered folding and interactions of 
macromolecules in all cell compartments. 

Ingram, 1990; Barker & 
Park, 2001; Huffer et al., 
2011  

H2O2, O2, and 
other agents with 
strong oxidizing 
capacity 

Peroxidation of lipids results in decreased fluidity of cell 
membrane. Damage of DNA and formation of 
crosslinkages between DNA and other molecules, 
modification of protein structure and folding, and thus 
function. Formation of aldehydes that subsequently 
damage molecules. 

Storz & Imlay, 1999; 
Cabiscol et al., 2000; Mishra 
& Imlay, 2012 

2.3.2 Global alterations in L. monocytogenes following stress 
exposure 

Stress induces alterations in L. monocytogenes, of which some are direct 
effects of a stressor on the morphology and function of the cell, whereas the 
others result from an attempt by the bacterium to compensate for these 
changes. Under mild stress, the alterations are few, whereas severe stress 
causes numerous changes in various cellular components (Bayles et al., 1996; 
Esvan et al., 2000; Bereksi et al., 2002; Duché et al., 2002a, 2002b; Bae et 
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al., 2012a; Bergholz et al., 2012). This chapter describes alterations in the 
phenotype, transcriptome, proteome, and metabolome of L. monocytogenes 
exposed to different stress conditions.  

Whole genome microarray studies have revealed that of the 
approximately 2850 genes of L. monocytogenes, 411, 714, 425, and 355 genes 
are differentially transcribed during growth under cold, heat, osmotic, and 
alkali stress conditions, respectively, compared with control growth 
condition (Glaser et al., 2001; Nelson et al., 2004; Chan et al., 2007; van der 
Veen et al., 2007; Giotis et al., 2008b; Bergholz et al., 2012). Similarly, 380 
proteins showed relative changes in expression levels under growth-enabling 
acid stress conditions (Bowman et al., 2012). Despite increases in the relative 
transcription and protein levels of numerous factors, overall protein 
synthesis is severely restricted under stress, as shown by only 12–38 proteins 
synthesized under growth-inhibiting cold, heat, acid, alkali, osmotic, and 
ethanol stress conditions (Phan-Thanh & Gormon, 1995, 1997; Bayles et al., 
1996; Esvan et al., 2000; Agoston et al., 2009).  

Under cold, acid, and osmotic stress conditions, the lag time of L. 
monocytogenes growth increases and growth rate and yield decreases 
(Walker et al., 1990; Bereksi et al., 2002; Beales, 2004; Shabala et al., 2008; 
Bowman et al., 2012). Under these conditions, the relative amounts of 
folding chaperones and proteins with roles in energy production are 
increased, probably because of increased energy demand (Duché et al., 
2002a; Cacace et al., 2010; Bowman et al., 2012). Moderate acid and osmotic 
stresses result in slightly decreased cell length, whereas under severe acid 
and osmotic stresses as well as under heat and alkali stresses, filamentous 
cell structures appear and cell size increases (Isom et al., 1995; Bereksi et al., 
2002; Giotis et al., 2007; van der Veen et al., 2007). This may be due to 
down-regulation of genes associated with cellular growth and cell division 
under heat, alkali, and osmotic stresses (van der Veen et al., 2007; Giotis et 
al., 2008b; Bergholz et al., 2012).  

Attachment of L. monocytogenes to inert food-contact surfaces is 
increased under acid, osmotic, and ethanol stresses (Briandet et al., 1999a, 
1999b; Gravesen et al., 2005). Under acid and osmotic stress conditions, 
increased attachment is due to changes in cell surface charge and the 
electron donor and acceptor properties of the cells (Briandet et al., 1999a). 
The formation of biofilms has been reported to be more efficient under acidic 
or alkaline conditions than at neutral pH, and at relative humidity of 100% 
rather than 85% or less (Nilsson et al., 2011; Bae et al., 2012b). Higher 
adherence of L. monocytogenes between 20°C and 45°C than between 8°C 
and 15°C indicates a temperature effect (Smoot & Pierson, 1998; Briandet et 
al., 1999b). Surprisingly, the flagella, with its role in the initial attachment to 
inert surfaces, is not expressed at temperatures above 30°C 
(Vatanyoopaisarn et al., 2000; Lemon et al., 2007; Todhanakasem & Young, 
2008; McLaughlin & Rees, 2009).  
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Many stress-induced alterations result from hindered growth, but stresses 
also induce specific changes in L. monocytogenes (Phan-Thanh & Gormon, 
1995, 1997; Bayles et al., 1996; Esvan et al., 2000; Chan et al., 2007; Cacace 
et al., 2010; Bowman et al., 2012). Under cold stress, transcription of 30 
genes was up-regulated, including those with roles in transport systems for 
compatible solutes and oligopeptides, modifications of cell membranes, and 
motility, and transcription of 10 genes was down-regulated during both 
stationary and logarithmic growth phases (Liu et al., 2002; Chan et al., 
2007). Accordingly, the intracellular concentrations of carnitine and the 
other cryoprotective osmolytes glycinebetaine, glutamate and trehalose, 
together with about half of the rest of the small organic compounds 
identified, were elevated during cold-temperature growth (Singh et al., 2011). 
Heat stress induces expression of class I, II, and III stress-response genes, 
several virulence genes, and the SOS response genes involved in the repair of 
DNA damage, restart of stalled replication forks, and in the induction of 
adaptive point mutations (McKenzie et al., 2000; Maul & Sutton, 2005; van 
der Veen et al., 2007). Acid stress depresses motility, chemotaxis, and cold-
shock proteins and induces energy production elements such as F0F1-ATPase 
(Bowman et al., 2012). Alkali stress seems to induce genes involved with 
phosphate uptake, phosphorylation or dephosphorylation, and DNA damage 
response (Giotis et al., 2008b, 2010), and osmotic stress increases the 
transcription of genes with roles in ion transport and uptake of osmolytes 
(Bae et al., 2012a; Bergholz et al., 2012). 

2.3.3 Factors with roles in stress tolerance of L. monocytogenes 
The roles of many regulatory and non-regulatory factors in tolerance of L. 
monocytogenes to temperature, pH, osmotic, ethanol, and oxidative stresses 
have been confirmed by comparing the phenotypes of genetically modified 
and unmodified strains (Table 5). The number of stress tolerance factors is 
rapidly increasing. 

Two-component systems 
One way in which bacteria sense environmental stress is through two-
component regulatory systems (TCS). These consist of an 
autophosphorylable sensory histidine kinase (HK), typically embedded in the 
cell membrane and an intracellular response regulator (RR) that when 
receiving a phosphoryl group from a cognate HK, either activates or 
represses the transcription of the target genes. L. monocytogenes has 16 
TCSs one of which is an orphan RR (Glaser et al., 2001). LisKR has a role in 
tolerance to temperature, acid, osmotic, ethanol, and oxidative stresses 
(Cotter et al., 1999, 2002; Kallipolitis & Ingmer, 2001; Sleator & Hill, 2005; 
Stack et al., 2005; Williams et al., 2005a; Chan et al., 2008). CesRK controls 
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the transcription of several cell-envelope related genes and affects growth 
under heat, osmotic, and ethanol stresses (Kallipolitis & Ingmer, 2001; 
Kallipolitis et al., 2003; Williams et al., 2005a; Gottschalk et al., 2008). An 
orphan RR, DegU, involved in the temperature-dependent regulation of 
motility and chemotaxis, is needed for heat and ethanol stress tolerance of 
(Knudsen et al., 2004; Williams et al., 2005b). DegU and motility-associated 
RR AgrA, with a role in osmotic stress tolerance, are needed for the 
formation of the wild-type biofilm on abiotic surfaces (Rieu et al., 2007; 
Gueriri et al., 2008; Garmyn et al., 2012). RR KdpE is associated with heat 
and osmotic stress tolerance (Kallipolitis & Ingmer, 2001; Brøndsted et al., 
2003). TCSs PhoRP, ResDE, VirRS, Lmo1060-1061, and Lmo1172-1173 have 
been linked solely to cold or ethanol stress tolerance (Williams et al., 2005a; 
Chan et al., 2008). 

Alternative sigma factors  
Sigma factors are dissociable subunits of RNA polymerase responsible for the 
recognition of a specific promoter region and transcription initiation at that 
promoter site. The L. monocytogenes EGD-e genome contains five sigma 
factors (Glaser et al., 2001), of which the main one, RpoD (σD), is an essential 
housekeeping factor (Metzger et al., 1994). Under changing environmental 
conditions, the alternative sigma factors σB, σC, σH, and σL associate with core 
RNA polymerase with varying intensities, enabling transcription of specific 
sets of genes, thus serving as important regulators of gene expression 
(Chaturongakul et al., 2008).  

Deletion of σB substantially decreases acid resistance and σB also has roles 
in temperature, alkali, osmotic, and oxidative stress tolerance of L. 
monocytogenes (Becker et al., 2000; Ferreira et al., 2001; Moorhead & 
Dykes, 2004; Wemekamp-Kamphuis et al., 2004b; Abram et al., 2008; 
Giotis et al., 2008a; Chaturongakul et al., 2011; Ait-Ouazzou et al., 2012) 
More than 140 genes have a putative σB-dependent promoter (Raengpradub 
et al., 2008). Under optimal or acidic growth conditions, transcription of a 
further set of more than 140 genes is affected by σB (Kazmierczak et al., 
2003; Hain et al., 2008; Raengpradub et al., 2008). The main glutamate 
decarboxylase system (GAD) genes, activated under acid stress to increase 
intracellular pH, and several compatible solute transport systems, are 
affected by the factor ( Fraser et al., 2003; Kazmierczak et al., 2003, 2006; 
Cetin et al., 2004; Wemekamp-Kamphuis et al., 2004b; Raengpradub et al., 
2008). Flagellar biosynthesis genes are repressed by σB (Raengpradub et al., 
2008).  

The contribution of σB to heat, acid, osmotic, and oxidative stress 
tolerance seems to be strain-dependent (Becker et al., 2000; Ferreira et al., 
2001; Moorhead & Dykes, 2003; Wemekamp-Kamphuis et al., 2004b; Ait-
Ouazzou et al., 2012), as the role of σB in the stress tolerance was greater in a 
serotype 1/2a strain than in serotype 4c strain (Moorhead & Dykes, 2003, 
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2004). Moreover, differences have been reported in the role of σB in the heat 
stress tolerance of three different serotype 1/2a strains (Ferreira et al., 2001; 
Moorhead & Dykes, 2003; Hu et al., 2007b; Ait-Ouazzou et al., 2012). 

Deletion of σL decreases tolerance to cold, acid, osmotic, and ethanol 
stresses. In an optimal or cold environment, σL directly or indirectly affects 
the expression of up to 708 genes, of which approximately 20 belong to the 
σL regulon (Arous et al., 2004; Chaturongakul et al., 2011; Mattila et al., 
2012). Several flagellar biosynthesis, motility, and chemotaxis genes are 
promoted by σL, and this factor also has a role in carbohydrate metabolism 
(Arous et al., 2004; Chaturongakul et al., 2011; Mattila et al., 2012).  

σH contributes to growth and survival under cold, acidic, and alkaline 
conditions and in minimal media (Rea et al., 2004; Chan et al., 2008; 
Chaturongakul et al., 2011). It contributes to the transcription of at least 169 
genes, of which about 60 belong to the σH regulon (Chaturongakul et al., 
2011). The genes of the phosphotransferase system operon are stimulated by 
σH, whereas transcription of several genes with roles in protein and 
nucleotide biosynthesis is repressed by the factor (Chaturongakul et al., 
2011). 

Temperature stress-associated σC is present solely in lineage I L. 
monocytogenes strains dominating in various non-host environments 
(Zhang et al., 2005; Chan et al., 2008). Only 11 genes have been reported to 
belong to the σC regulon (Chaturongakul et al., 2011). Under heat stress, the 
transcription of five genes was reported to be affected by σC, but none was 
affected in optimal conditions (Zhang et al., 2005; Chaturongakul et al., 
2011). At least two of these five genes have roles in heat stress tolerance 
(Zhang et al., 2005). 

Some genes are controlled by more than one sigma factor (Chaturongakul 
et al., 2011; Nielsen et al., 2012). The greatest overlap was reported between 
σB and σH, with 92 genes including several associated with energy 
metabolism being promoted by these two factors (Chaturongakul et al., 
2011). The transcription of 21 genes is increased by both σB and σL and of the 
five genes controlled by σC, two are controlled also by σB (Chaturongakul et 
al., 2011). 

Other regulators 
Stress responses of L. monocytogenes are under the control of complex, 
hierarchial network of TCSs, sigma factors and numerous other regulators 
(Kazmierczak et al., 2006; Kamp & Higgins, 2009; Ollinger et al., 2009; 
Toledo-Arana et al., 2009; Chaturongakul et al., 2011). Independent of the 
type of the stress, at least three of the seven regulators located in the sigB 
operon are needed for activation of σB (Chaturongakul & Boor, 2004; Shin et 
al., 2010). σB controls the expression of Hfq, a small RNA-binding regulatory 
protein involved in the tolerance of osmotic and ethanol stresses and of 
ArgR, a regulator of the arginine deimidase (ADI) pathway needed for 
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survival under acidic environment (Christiansen et al., 2004, 2006; Ryan et 
al., 2009). 

The transcriptional repressor CtsR negatively regulates class III stress- 
response genes and decreases resistance to heat, acid, osmotic, and oxidative 
stress (Nair et al., 2000; Karatzas & Bennik, 2002; Karatzas et al., 2003; Hu 
et al., 2007b). It also has a role in regulation of motility (Karatzas & Bennik, 
2002; Karatzas et al., 2003; Grundling et al., 2004; Shen & Higgins, 2006; 
Lemon et al., 2007; Kamp & Higgins, 2011). HrcA negatively regulates class I 
stress-response genes and has roles in heat stress resistance and biofilm 
formation (Hu et al., 2007a; van der Veen & Abee, 2010). Both CtsR and 
HrcA affect the transcription level of several genes, together with σB  and the 
major virulence-gene regulator PrfA (Hu et al., 2007b; Hu et al., 2007a; 
Ollinger et al., 2009; Toledo-Arana et al., 2009; Chaturongakul et al., 2011). 
Genes controlled by both σB and PrfA have roles in the acid and osmotic 
stress responses and survival inside the host (Ferreira et al., 2001; Abram et 
al., 2008; Toledo-Arana et al., 2009; Bruno & Freitag, 2010).  

Non-regulatory factors 
As is the case for most of the regulatory factors, the roles of most stress-
associated non-regulatory factors of L. monocytogenes have roles in multiple 
stresses. A serine protease HtrA, responsible for degradation of misfolded 
proteins and regulated by LisRK, is associated with at least four different 
stresses (Pallen & Wren, 1997; Stack et al., 2005). All three cold-shock 
proteins (Csp), that belong to a highly conserved group of structurally related 
nucleic acid binding proteins, play roles not only under cold but also under 
osmotic and oxidative stress conditions (Ermolenko & Makhatadze, 2002; 
Schmid et al., 2009; Loepfe et al., 2010). Proteins of this family act as 
chaperones by assisting in folding and un-folding of nucleic acids, and 
potentially regulate both transcription and translation under various stresses 
(Phadtare, 2004; Horn et al., 2007). Universal stress proteins (Usps), 
thought to protect cells from DNA damage and respiratory distress, have 
been reported to have roles in cold and oxidative stress tolerance (Kvint et 
al., 2003; Seifart Gomes et al., 2011).  

Under low temperature, L. monocytogenes strives to sustain the fluidity 
of cell membranes by regulating its fatty acid composition (Annous et al., 
1997; Edgcomb et al., 2000). Accordingly, the genes of the Bkd cluster, 
controlling the branched-chain fatty acid composition of the cell wall, were 
confirmed to have a role in cold stress tolerance (Zhu et al., 2005). The role 
of PgpH and RelA in cold stress tolerance seems to be due to adjustment of 
cellular guanosine pentaphosphate [(p)ppGpp] levels during low-
temperature growth (Liu et al., 2006b). The (p)ppGpp is an important 
intracellular signal molecule that affects association of sigma factors to core 
RNA polymerases under various stress conditions (Dalebroux & Swanson, 
2012).  
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The accumulation of cryoprotective osmolytes increases the tolerance of 
L. monocytogenes to cold, heat, and osmotic stress (Ko et al., 1994; Kempf & 
Bremer, 1998; Angelidis & Smith, 2003a; Wemekamp-Kamphuis et al., 
2004a; Ells & Truelstrup Hansen, 2011). These substrates restore cellular 
turgor pressure, stabilize enzymatic functions, and affect the membrane lipid 
bilayer (Ko et al., 1994; Russell et al., 1995; Kempf & Bremer, 1998; Ells & 
Truelstrup Hansen, 2011). Several factors involved with intracellular 
accumulation of compatible solutes have roles in tolerance to cold or osmotic 
stress (Borezee et al., 2000; Angelidis & Smith, 2003a, 2003b; Christiansen 
et al., 2004; Chassaing & Auvray, 2007; Ells & Truelstrup Hansen, 2011; 
Burall et al., 2012). OpuC, Gbu, and BetL are needed for importation of 
carnitine and betaine (Angelidis & Smith, 2003a, 2003b; Fraser et al., 2003; 
Kazmierczak et al., 2003; Cetin et al., 2004; Sleator & Hill, 2010). OppA 
associated with cold stress, is responsible for the importation of unknown, 
potentially cryoprotective peptides (Borezee et al., 2000). TreA is needed for 
the breakdown of trehalose, thus decreasing tolerance to osmotic stress, and 
it has role in heat stress tolerance (Ells & Truelstrup Hansen, 2011).  

Under acid stress, L. monocytogenes strives to maintain pH homeostasis. 
F0F1-ATPase serves as a channel for proton translocation across the cell 
membrane (Cotter et al., 2000). Four out of five GAD pathway factors are 
associated with the internalization and conversion of glutamate to proton-
consuming gamma-aminobutyrate (Cotter et al., 2001; Karatzas et al., 2012). 
Two GAD pathway genes and three adjacent genes are generally missing 
from serotype 4 L. monocytogenes strains that are under-represented in 
various non-host environments (Cotter et al., 2005; Ryan et al., 2010; Orsi et 
al., 2011). ADI pathway factors involved in the conversion of arginine to 
ornithine, carbon dioxide and ammonia protect L. monocytogenes from acid 
stress by increasing intracellular pH (Ryan et al., 2009).  

Catalase, the superoxide dismutase (SOD) system, and ferritin 
synergistically protect bacteria from oxidative stress caused by ROS (Fisher 
et al., 2000; Mongkolsuk & Helmann, 2002; Dussurget et al., 2005; 
Archambaud et al., 2006; Azizoglu & Kathariou, 2010b). SOD converts 
superoxide anions to H2O2 that is converted to water and oxygen by catalase 
(Dussurget et al., 2005; Azizoglu & Kathariou, 2010b). Ferritin binds iron 
that reacts with oxygen intermediates to produce deleterious free radicals 
(Dussurget et al., 2005). Ferritin also has roles in cold and heat tolerance 
and catalase also has a role in cold stress tolerance of L. monocytogenes 
(Dussurget et al., 2005; Azizoglu & Kathariou, 2010b), and the roles of 
several factors with unknown functions in stress tolerance has been 
confirmed (Table 5). 

2.3.4 Stress adaptation and cross adaptation of L. monocytogenes 
Exposure to cold, heat, acid, alkali, osmotic, ethanol, and oxidative stress 
conditions increase tolerance of L. monocytogenes to the same factor, 
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resulting in either a more rapid transition from lag to growth phase, or a 
higher lethal level of the stress (Stephens et al., 1994; Lou & Yousef, 1997; 
Aase et al., 2000; Phan-Thanh et al., 2000; To et al., 2002; Lundén et al., 
2003a; Shabala et al., 2008; Skandamis et al., 2008; Mastronicolis et al., 
2011). The enhanced stress tolerance of these adapted cells is partly due to 
stress-induced expression of enzymes involved in the synthesis of 
metabolites needed under stress (Beales, 2004; Giotis et al., 2008b). 
Constitutively expressed proteins that are active only under stress conditions 
have also been reported (Berry & Foegeding, 1997).  

Adaptation to one stress factor often protects an organism against the 
lethal effects of another stressor. Cross adaptation of L. monocytogenes to 
osmotic, ethanol, and oxidative stresses has been reported to result from 
adaptation to acid stress (Lou & Yousef, 1997; Phan-Thanh et al., 2000; 
Faleiro et al., 2003). Heat, alkali, osmotic, or ethanol stress exposure also 
protects L. monocytogenes against other stress factors (Lou & Yousef, 1997; 
Taormina & Beuchat, 2001; Skandamis et al., 2008). Even though resistance 
to oxidative stress increases following adaptation to several other stresses, 
adaptation to oxidative stress itself does not seem to cross adapt L. 
monocytogenes to other stresses (Lou & Yousef, 1997; Bergholz et al., 2012).  

2.3.5 Stress tolerance of L. monocytogenes in biofilms 
L. monocytogenes tolerates various stresses better in mature biofilms than as 
planktonic cultures or in immature biofilms (Robbins et al., 2005; Nilsson et 
al., 2011). Higher concentrations of ozone, chlorine, and H2O2 are needed to 
destroy the bacterium in biofilms than as free-living cells (Robbins et al., 
2005; Yun et al., 2012). Moreover, its tolerance to quaternary ammonium 
compounds is better in mature biofilms than in immature ones (Nilsson et 
al., 2011), attributable to the decreased physiological activity of the bacteria 
inside the biofilm (Chae & Schraft, 2001). The extracellular matrix of the 
biofilm may also protect the bacterium from the lethal effects of the stressors 
(Hoyle et al., 1990; Chae & Schraft, 2001). 
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3 AIMS OF THE STUDY 

The objectives of this work were to trace the initial sources of L. 
monocytogenes contamination in food processing plants and processed 
foods, and to identify genetic factors with roles in tolerance to stresses this 
pathogen may be exposed to in the food chain.  
 
The specific aims were to examine: 

1. the role of raw materials as potential sources of L. monocytogenes 
contamination of pork slaughterhouses and fish processing plants (I, 
II). 

2. the role of raw material as a potential source of L. monocytogenes 
contamination of fish products (II). 

3. the role of flagellar genes flhA and motA in the cold tolerance of L. 
monocytogenes (III). 

4. the role of putative DEAD-box RNA helicase-encoding genes 
lmo0866, lmo1246, lmo1450, and lmo1722 in the tolerance of L. 
monocytogenes to temperature, pH, osmotic, ethanol, and oxidative 
stresses (IV, V). 

5. the correlation between cold tolerance and motility of L. 
monocytogenes (III, IV). 
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4 MATERIALS AND METHODS 

4.1 L. monocytogenes isolates (II) 

A total of 101 fish product isolates from 21 fish processing plants from 1996 
to 2002, and belonging to the culture collection of Department of Food 
Hygiene and Environmental Health (former Department of Food and 
Environmental Hygiene) were included. 

4.2 Bacterial strains and plasmids (III-V) 

The sequenced L. monocytogenes strain EGD-e (Glaser et al., 2001) was 
used for genetic modifications. Strains and plasmids used are presented in 
Table 6.  

4.3 Sampling (I, II) 

A total of 271 pig tonsils, 132 from fattening pigs and 139 from sows (I), from 
five different slaughterhouses in various parts of Finland, along with 257 raw 
fish samples (II), sampled at the slaughterhouse during slaughtering (45 
samples) or at the processing factory before processing (212 samples), were 
collected between 1998 and 2001. Each fish sample contained slime, skin, 
gills, and fins from one to five fish heads. Samples were homogenized in half-
Fraser broth (Oxoid, Basingstoke, UK) in a ratio of 1:10.  

4.4 Determination of L. monocytogenes (I, II) 

L. monocytogenes was isolated from pig tonsil and raw fish samples 
according to the guidelines of the International Organization for 
Standardization (Anonymous, 1996), using Oxford (Oxoid), Palcam (Oxoid), 
and L. monocytogenes blood agars (Johansson, 1998). Gram-staining, 
catalase reaction, and the API Listeria kit (bioMérieux, Inc, Marcy l’Etoile, 
France) were used for identification of L. monocytogenes. 

4.5 Growth conditions (III-V) 

In the control, L. monocytogenes was grown at 37˚C on blood or brain heart 
infusion (BHI) agar plates (BD, Franklin Lakes, NJ, USA), or in BHI broth 
(BD) supplemented with antibiotics (Sigma-Chemicals) when appropriate. 
Escherichia coli was grown on Luria-Bertani (LB) agar (BD) or in LB broth 
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(BD), supplemented with antibiotics (Sigma-Chemicals) when appropriate. 
To study cold and heat stress responses, the wild-type L. monocytogenes 
EGD-e and mutant strains were grown in BHI broth at 3˚C and at 42.5˚C, 
respectively. Acid and alkali stress responses were studied  

 Bacterial strains and plasmids used in studies III-V. Table 6.

Strain or plasmid Genotype or characteristic a Reference or 

sourceb 

Listeria monocytogenes   
 EGD-e Parental serotype 1/2a strains Glaser et al., 2001 
 EGD-eΔflhA 1274 bp out-of-frame deletion of EGD-e flhA gene III 
 EGD-eΔmotA 472 bp out-of-frame deletion of EGD-e motA gene III 
 Δlmo0866 Deletion of EGD-e lmo0866 cds with seven upstream 

and 170 downstream nucleotides 
IV 

 Δlmo1246 Deletion of EGD-e lmo1246 cds with ten upstream and 
one downstream nucleotides 

IV 

 Δlmo1450 Deletion of EGD-e lmo1450 cds with three 
downstream nucleotides 

IV 

 Δlmo1722 Deletion of EGD-e lmo1722 cds IV 
 Δlmo0866c Δlmo0866, tRNA Arg::plmo0866c, complemented strain IV 
 Δlmo1450c Δlmo1450, tRNA Arg::plmo1450c, complemented strain IV 
 Δlmo1722c Δlmo1722, tRNA Arg::plmo1722c, complemented strain IV 
 EGD-epPL2 EGD-e, tRNA Arg::pPL2,  IV 
 Δlmo0866pPL2 Δlmo0866, tRNA Arg::pPL2  IV 
 Δlmo1450pPL2 Δlmo1450, tRNA Arg::pPL2 IV 
 Δlmo1722pPL2 Δlmo1722, tRNA Arg::pPL2 IV 
Escherichia coli   
 TOP10 Electrocompetent strain Invitrogen 
 NEB5α Electrocompetent strain New England 

Biolabs 
 HB101 Conjugation donor containing helper plasmid pRK24   CRBIP 
Plasmid   
 pMAD  Arnaud et al., 2004 
 pMAD- ΔflhA pMAD containing homologous region up- and 

downstream of EGD-e flhA 
III 

 pMAD- ΔmotA pMAD containing homologous region up- and 
downstream of EGD-e motA 

III 

 pMAD- Δlmo0866 pMAD containing homologous region up- and 
downstream of EGD-e lmo0866 

IV 

 pMAD- Δlmo1246 pMAD containing homologous region up- and 
downstream of EGD-e lmo1246 

IV 

 pMAD- Δlmo1450 pMAD containing homologous region up- and 
downstream of EGD-e lmo1450 

IV 

 pMAD- Δlmo1722 pMAD containing homologous region up- and 
downstream of EGD-e lmo1722 

IV 

 pPL2  Site-specific integration vector Lauer et al., 2002 
 plmo0866c pPL2 containing ~500bp upstream nucleotides, cds 

and downstream terminator sequence of EGD-e 
lmo0866 

IV 

 plmo1450c pPL2 containing ~200bp upstream nucleotides and 
cds of EGD-e lmo450 

IV 

 plmo1722c pPL2 containing ~620bp upstream nucleotides, cds 
and downstream terminator sequence of EGD-e 
lmo1722 

IV 

a cds, coding sequence 
b CRBIP, Biological Resource Centre of Institut Pasteur 
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at 37˚C in BHI broth adjusted to pH 5.6 and pH 9.4, respectively, by using 1 
M HCl or NaOH. To study osmotic, ethanol, or oxidative stress responses at 
37˚C, BHI broth was supplemented with 6% NaCl, 3.5% ethanol (vol/vol) 
(99.5%) or 5 mM H2O2 (30%). The minimum and maximum growth 
temperatures were examined in tryptic soy agar (TSA) (BD) containing 1.5 g 
and 2.5 g agar per liter, respectively. 

4.6 Typing 

4.6.1 Serotyping (II) 
Serotyping of 142 L. monocytogenes isolates from raw and processed fish 
was done using commercial Listeria antisera (Denka Seiken, Tokyo, Japan) 
according to the manufacturer’s instructions. 

4.6.2 PFGE typing (I, II) 
In situ DNA isolation and PFGE of L. monocytogenes isolates were done 
according to Autio et al. (2002) using proteinase K (Finnzymes, Helsinki, 
Finland) or Pronase (Roche Diagnostics GmbH, Mannheim, Germany). 
Restriction enzymes AscI (New England Biolabs) (I, II) and ApaI (Boeringer 
Mannheim, Mannheim, Germany) (I) were used for DNA digestion. 

AscI and ApaI macrorestriction patterns were analyzed using 
BioNumerics software (Applied Maths, Kortrijk, Belgium). The Dice 
coefficient was calculated as a measure of the similarity of restriction 
patterns, based on band position. The position tolerance was optimal when 
set at 1.1% (I) or 1.0% (II) for the total length of restriction patterns with no 
increase. The clustering and construction of dendrograms were performed by 
the unweighted pair-group method with arithmetic averages (UPGMA).  

4.7 Transcriptional analysis (III-V) 

4.7.1 Total RNA isolation 
To compare the transcription levels of flhA, motA, lmo0866, lmo1246, 
lmo1450, and lmo1722 in different stress conditions with control values, 
three replicate cultures of the wild-type EGD-e were grown to mid-
logarithmic growth phase in each treatment, and total RNA was extracted 
using the Qiagen RNeasy Midi-kit (Qiagen, Valencia, CA, USA) according to 
the manufacturers instructions. The cells were lysed in Tris-EDTA buffer 
using lysozyme 25 mg/ml (Sigma-Aldrich, St.Louis, MO, USA) and 
mutanolysin 250 U/ml (Sigma-Aldrich) for 30 min at 37˚C. DNase treatment 
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 Primers used in the study. Table 7.

Application Primer Sequence in 5’ to 3’ direction a, b Reference 

Quantitative flhA forward GGAGCACAACCAAGCATTT III 
real-time flhA reverse CGTTTCCCCGTTCATTTTT III 
PCR motA forward CGTGCTTTGGACACCATTT III 
 motA reverse TCTGCTTTTCTTCCCTTTTCC III 
 16S rRNA forward GATGCATAGCCGACCTGAGA III 
 16S rRNA reverse CTCCGTCAGACTTTGCTCCA III 
 gap forward AAAGCTGGCGCTAAAAAAGTTG Kim et al., 2005 
 gap reverse TTCATGGTTTACATTGTAAACGATTG Kim et al., 2005 
 lmo0866-5 AGCGGTTTACGGTGGTAGTG IV 
 lmo0866-6 GCCCATGTTTAGCATTTCGT IV 
 lmo1246-5 CGACAAGGTTGCCCATTTAG IV 
 lmo1246-6 GTTTTGGTAAGCGGCTAAGG IV 
 lmo1450-5b AACGTTTTCGCCGTATGAAC IV 
 lmo1450-6b GAACGCCTGGTCGTATCAAT IV 
 lmo1722-5 GACATTGGCTCCTCCGATTA IV 
 lmo1722-6b ACGGAAGTAATCCGTTCGTG IV 
Generation Pre-flhA-forward AATTGGATCCCGACACATATTTCCGTCGTG III 
of deletion  Pre-flhA-reverse AATTGAATTCGCACGTTTTTCTTTCGCTTC III 
mutants Post-flhA-forward AATTGAATTCGCGCTGCTTTTACAGGATTC III 
 Post-flhA-reverse AATTACGCGTACTGTTTTGCTCACGCTCCT III 
 Pre-motA-forward AATTGGATCCCGTTTTAGACGGCACGATTT III 
 Pre-motA-reverse AATTGAATTCACAGCCGTAATTGTCCCAAG III 
 Post-motA-forward AATTGAATTCTGGACACCATTTGCCAATAA III 
 Post-motA-reverse AATTGAATCCTGGACACCATTTGCCAATAA III 
 lmo0866-1 GCGCGGATCCTGTTCGCGATAAAGATGCAG IV 
 lmo0866-2 ATATGGTAACTATTTGTCTATGATTCACGGCATCAGAAA IV 
 lmo0866-3 CTGATGCCGTGAATCATAGACAAATAGTTACCATATAGATAGA IV 
 lmo0866-4 GCCGTGAATTCTGCGATAATTGCCATCGTTA IV 
 lmo1246-1 GCGCGGATCCCTAAATCCACCGCTCCCATA IV 
 lmo1246-2 TCCATTGTTTGGACCTTCTTCAGTCCTCATTTCCTCATATCATC IV 
 lmo1246-3 TGATATGAGGAAATGAGGACAAGAAGGTCCAAACAATGGAAA IV 
 lmo1246-4 GCCGACGCGTCGGAAGATTGGCCAGAAATA IV 
 lmo1450-1 GCGCGGATCCGAAGGGCATCAAAGCCAATA IV 
 lmo1450-2 ATAGAACGGAGTGGAAATATGTGAGGAATGAATTATGCTAA IV 
 lmo1450-3 TAGCATAATTCATTCCTCACATATTTCCACTCCGTTCTATACC IV 
 lmo1450-4 GCCGACGCGTTGCTCATCGTTGTTTGGTTC IV 
 lmo1722-1 GCGCGGATCCAAGCGGTGGATTTCATCAAG IV 
 lmo1722-2 ACTAATAAAGGAGTCGGGTTGATGCGTCGAATGTTTTTCT IV 
 lmo1722-3b ATTCGACGCATCAACCCGACTCCTTTATTAGTTCTTC IV 
 lmo1722-4b CGCGACGCGTTTTGTTGGTTGGCTGATTTG IV 
Sequencing lmo0866-7 CGGATACGATGATCAACAACG IV 
 lmo0866-8 CAGCTGTTGTTGCCCAAGTA IV 
 lmo0866-9 CGGTGAAACGGAAGAAATTG IV 
 lmo0866-10 GTAAGTCCACCCCAAAACGA IV 
 lmo1246-7 CGGGATTAACCAAGCAAAAA IV 
 lmo1246-8 TGGGAACACTGGAGCATGT IV 
 lmo1246-9 TTTTGGGGGCTTAGAGTTCA IV 
 lmo1246-10 GAATTCCCAACGATGTCACC IV 
 lmo1450-7 TGGCGATTTCCCATTTGTAT IV 
 lmo1450-8 AAACTTGGGCTAAACGAGCA IV 
 lmo1450-9 CGCGTACGTTCAATTTCAGA IV 
 lmo1450-10 CATCGATGACTCCGTAGCAA IV 
 lmo1722-7 TTCTGCAAGGGATGGTAAGG IV 
 lmo1722-8 ATTAGAATGGAACGCGCATC IV 
 lmo1722-9 TGAAGCAATTCTGCGACATC IV 
 lmo1722-10 TCCAGATGGGTTTTAATCTTTTG IV 
Complementation lmo0866-11 CCGGGATCCGCTGGAAATCATTTTTGGATG  IV 
 lmo0866-12 GGTCTAGATAGCACCACACTCCCGTATC IV 
 lmo1450-11 GGTCTAGAATTCCTCACTTATCGTTTTT IV 
 lmo1450-12 CGGGGATCCCATCGATGACTCCGTAGCAA IV 
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Table 7. Continued 

Application Primer Sequence in 5’ to 3’ direction a, b Reference 

 lmo1722-11 GGTCTAGATTAAATGGCATCCTCGCAAC IV 
 lmo1722-12 CGGGGATCCGGCGATGGTGTTTTCATAGC IV 
 NC16 GTCAAAACATACGCTCTTATC Lauer et al., 2002 
 PL95 ACATAATCAGTCCAAAGTAGATGC Lauer et al., 2002 

a Restriction sites for cloning are underlined. 
b Overlapping 5’-end extensions of splicing-by-overlap extension PCR primers for construction insert 

from two PCR fragments are indicated in italics. 

 
was done as an on-column treatment using the Qiagen RNase-Free DNase set 
(Qiagen). Additional DNase treatment was done for extracted RNA by 
utilizing the Ambion DNA-free kit (Ambion, Austin, TX, USA). The RNA 
yield was determined by using the Nanodrop ND-1000 (Nano Drop 
Technologies, Wilmington, DE, USA) and the integrity was verified with an 
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

4.7.2 Reverse transcription, real-time  PCR, and quantification of gene 
expression 

Reverse transcription (RT) was performed using the Finnzymes Dynamo 
cDNA synthesis kit (Finnzymes, Espoo, Finland) in two replicates for each 
RNA sample. As a control, an additional RT reaction was performed without 
reverse transcriptase enzyme (no-RT control). A sample of 800 ng (III) or 
400 ng (IV-V) of total RNA from each sample was reverse-transcribed into 
complementary DNA (cDNA) according to the manufacturer’s instructions, 
with predenaturation at 65˚C for 5 min, and extension at 40˚C for 40 min. 
cDNA samples were diluted 1:10 with an additional 1:100 dilution for rRNA 
analysis (III), or 1:5000 (IV-V). The real-time polymerase chain reactions 
(PCR) were performed using a Rotor-Gene 3000 instrument (Corbett 
Research, Sydney, Australia) with two replicates for each cDNA sample using 
SYBR Green chemistry (Dynamo Flash SYBR Green qPCR kit, Finnzymes) 
according to the manufacturer’s instructions. The relative expression of flhA, 
motA, lmo0866, lmo1246, lmo1450, and lmo1722 was calculated using the 2-

ΔΔCt method (Schmittgen and Livak, 2008). The 16S rRNA gene (III-V) and 
gap (III), the most stably expressed housekeeping genes of L. 
monocytogenes (Tasara & Stephan, 2007), were used as reference genes. The 
amplification efficiencies of the six target genes and reference genes using 
the primers listed in Table 7 ranged between 0.96 and 1.07. 
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4.8 Genetic modification of L. monocytogenes  

4.8.1 Construction of deletion mutant strains (III, IV) 
To construct flagellar gene deletion mutant strains EGD-eΔflhA and EGD-
eΔmotA, and DEAD-box RNA helicase gene deletion mutant strains 
Δlmo0866, Δlmo1246, Δlmo1450, and Δlmo1722 without an associated 
antibiotic resistance gene in L. monocytogenes EGD-e, allelic replacement 
according to Arnaud et al. (2004) was used. Restriction-ligation (III) or 
splicing-by-overlap extension PCR protocol (IV) was used to construct target 
gene-deficient fragments for allelic replacement from two PCR products. 
Deletion mutants were confirmed by PCR with target gene-specific PCR 
primers and by sequencing at the Institute of Biotechnology, University of 
Helsinki, Finland. The primers used for construction of deletion mutants, 
PCR, and sequencing are presented in Table 7.   

4.8.2 Complementation of deletion mutations (IV) 
Functional complementation of the phenotypically affected Δlmo0866, 
Δlmo1450, and Δlmo1722 mutants was performed according to Lauer et al. 
(2002) by restoring the wild-type copy of each deleted gene into the 
respective deletion mutant strain, using the site-specific integration vector 
pPL2, received from Prof. Martin Loessner, Swiss Federal Institute of 
Technology, Zurich, Switzerland. The coding sequence and approximately 
500-base pair (bp), 200-bp and 600-bp upstream regions, including the 
putative promoters of lmo0866, lmo1450 and lmo1722, respectively, were 
amplified by PCR and ligated between the SpeI and BamHI cloning sites of 
pPL2 (Table 6). The plasmids were transformed into the recipient L. 
monocytogenes strains by conjugation, according to Ma et al. (2011), except 
that selective Oxoid Chromogenic Listeria Agar (Oxoid) was used for 
selection of transconjugants. Strains carrying the pPL2 constructs were 
selected with chloramphenicol and confirmed by PCR using gene-specific 
primer pairs (Table 6). Integration of the pPL2 constructs into the 
chromosome of the recipient cells was confirmed by PCR with primers NC16 
and PL95 (Lauer et al., 2002). 

4.9 Characterization of genetically modified L. 
monocytogenes 

4.9.1 Electron microscopy (III) 
To examine the presence of flagella in the wild-type EGD-e and EGD-e∆flhA 
and EGD-e∆motA mutant strains, cells grown in BHI broth to optical density 
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at 600 nm (OD600) of approximately 0.4 were washed with physiological 
saline. A drop of bacterial suspension was placed on a carbon-coated grid, 
and the preparation was negatively stained in 3% uranyl acetate for 20 to 30 
s. Grids were examined with a Jeol 1200 EX II transmission electron 
microscope (Jeol Ltd, Tokyo, Japan) at the Electron Microscopy Unit of the 
Institute of Biotechnology, University of Helsinki. 

4.9.2 Growth curve analyses (III-V) 
Single colonies of EGD-e and each mutant strain grown on blood agar plates 
were inoculated into 10 ml of BHI broth at 37°C in three or five replicates. 
Cultures grown for 16-17 h (III) or 20 h (IV, V), were diluted 1:100 in test or 
control growth media. The strains were grown in the Bioscreen C 
Microbiology Reader (Growth Curves Ltd, Helsinki, Finland) under the 
aforementioned test conditions and in BHI broth at 37°C as a control. The 
OD600 levels of the cultures were monitored at 15-min intervals at 37°C and 
42.5°C for 48 h, or at 1-h intervals at 3°C for 21 days. The OD600 data were 
fitted to growth curves to obtain the growth rates and maximum OD600 levels 
for the wild-type EGD-e and the deletion mutant strains, using the nonlinear 
least squares function in the statistical computing package R (Venables & 
Ripley, 2002) (III), or DMFit software version 2.1. (Computational 
Microbiology Research Group, Institute of Food Research, Colney, Norwich, 
UK) (Baranyi & Roberts, 1994) (IV, V).  

4.9.3 Correspondence between viable cell numbers and OD600 
readings (III, IV) 

The correspondence between the viable cell numbers and OD600 of the wild-
type EGD-e and deletion mutant strains at 3°C and at 37°C were examined by 
plating cultures grown in BHI broth at two time points, representing early 
logarithmic and late logarithmic growth phases (III), or at three time points, 
representing early logarithmic, late logarithmic, and early stationary growth 
phases (IV) of the wild-type EGD-e, to plate count agars (Difco Laboratories, 
Detroit, MI, USA).  

4.9.4 Minimum and maximum growth temperatures (IV, V) 
The mean minimum and maximum growth temperatures of the wild-type 
EGD-e and mutant strains were examined with three or five replicate 
cultures of each strain, according to Hinderink et al. (2009), using the 
Gradiplate W10 temperature gradient incubator (BCDE Group, Helsinki, 
Finland), with the following modifications. Cultures grown for 20 h in BHI 
broth and diluted 1:100 in the same medium were plated by the stamping 
technique onto TSA. To study minimum growth temperatures, the strains 
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were grown for 21 days aerobically in the Gradiplate incubator using 
temperature gradients from 1.0°C to 9.5°C and from 8.7°C to 16.8°C. To 
analyse maximum growth temperatures, the strains were grown for 48 h 
using a temperature gradient from 39.1°C to 45.6°C. The growth boundaries 
were observed with a stereomicroscope. The temperatures under and above 
which dense growth was abolished and separate colonies appeared were 
determined as the minimum and maximum growth temperatures, 
respectively.  

4.9.5 Swarming motility (III, IV) 
The swarming motility of the wild-type EGD-e, all six deletion mutant 
strains, and complementation strains on semisolid tryptic soy medium was 
examined in triplicate, according to Kathariou et al. (1995), using tryptic soy 
broth (BD) solidified with 0.25% agar (III, IV). The plates were incubated at 
3°C for three (III) or eight weeks (IV), or at 25°C and 37°C for 24 h.  

4.10 Statistical testing 

Significance of differences in the prevalence of L. monocytogenes in tonsils 
of fattening pigs and sows, between two sampling sites of raw fish, and in the 
distribution of L. monocytogenes isolates recovered from raw and processed 
fish to serotypes was examined using the χ2 chi-square test. The t-test was 
used to determine the significance of differences in the transcription levels of 
the flhA, motA, lmo0866, lmo1246, lmo1450, and lmo1722 in test and control 
growth conditions, and in growth rates (III, V) and in maximum optical 
densities (III) of the wild-type EGD-e and the deletion mutant strains under 
test and control growth conditions.  
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5 RESULTS 

5.1 Prevalence and diversity of L. monocytogenes in tonsils 
of pigs and in raw fish (I, II) 

A total of 14% (38/271) of pig tonsils and 4% (11/257) of raw fish samples 
harbored L. monocytogenes. The prevalence in tonsils of fattening pigs 
(22%) was significantly higher than in sows (6%) (P<0.001), whereas there 
were no differences in prevalence between the two sampling sites of raw fish 
(P>0.05). From the 38 positive tonsil samples, 24 different L. 
monocytogenes genotypes were recovered with PFGE typing. The positive 
raw fish samples represented nine different PFGE types and three serotypes. 

5.2 Comparison of L. monocytogenes isolated from raw and 
processed fish (II) 

From 101 fish product isolates, 32 different PFGE types were recovered. Two 
fish product PFGE types, found from non-heat treated, sugar-salted “gravad” 
fish, were indistinguishable from raw fish PFGE types. Serotyping divided 
fish product isolates and raw fish isolates similarly into serotypes, except that 
serotype 3a was more prevalent in raw fish (P<0.05).  

5.3 Relative expression of flhA, motA, lmo0866, lmo1246, 
lmo1450, and lmo1722 during growth at various stress 
conditions (III-V) 

During mid-logarithmic growth in BHI broth at 3˚C, the transcription levels 
of flagellar genes flhA and motA were 465-fold and 238-fold higher, 
respectively, than at 37˚C (P<0.01). The relative expression of DEAD-box 
RNA helicase-encoding genes lmo0866, lmo1246, lmo1450, and lmo1722 was 
also increased during growth at 3˚C (P<0.05) (Fig. 1). In 6% NaCl, the 
relative expression of lmo0866 and lmo1246 was lower than under control 
growth condition (P<0.05), while the relative expression of lmo1450 and 
lmo1722 was not affected. In 3.5% ethanol, the relative expression of 
lmo1246, lmo1450, and lmo1722 was increased (P<0.05), whereas the 
transcription level of lmo0866 was unaffected. At 42.5˚C, pH 5.6, pH 9.4, 
and in 5 mM H2O2, the transcription levels of the DEAD-box RNA helicase-
encoding genes did not differ from those in the control growth condition. 
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 Relative expression of the DEAD-box RNA helicase genes lmo0866, lmo1246, Fig. 1.
lmo1450, and lmo1722 in Listeria monocytogenes EGD-e during mid-logarithmic growth at 3˚C, 
at 42.5˚C, at pH 5.6, at pH 9.4, in 6% NaCl, in 3.5% ethanol, and in 5 mM H2O2 in relation to 
midlogarithmic growth at 37˚C in BHI broth. Error bars represent the standard deviation of three 
independent replicates. Significant differences (paired t-test, P<0.05) in relative expression levels 
are indicated by an asterisk. Adopted from IV and V. 

5.4 Characteristics of genetically modified L. 
monocytogenes 

5.4.1 Morphology (III, IV)  
After 24 h at 37˚C on blood agar, EGD-eΔflhA, EGD-eΔmotA, Δlmo0866, 
Δlmo1246, Δlmo1722, Δlmo0866c, Δlmo1450c, and Δlmo1722c formed 
colonies similar to the wild-type strain EGD-e. Colonies of Δlmo1450 were 
more rounded and opaque, and the diameter was approximately one-third of 
that of the wild-type EGD-e colonies. All strains were β-haemolytic. 

Electron microscopy showed that the wild-type EGD-e produced flagella 
whereas EGD-eΔflhA and EGD-eΔmotA appeared nonflagellated at 3˚C. At 
37˚C all three strains appeared nonflagellated. 

5.4.2 Stress tolerance (III-V) 
Deletion of flhA or motA decreased the growth rate of the wild-type strain 
EGD-e by 25% at 3˚C (Table 8A). At this temperature, the maximum optical 
densities of EGD-eΔflhA and EGD-eΔmotA were 27% and 22% lower, 
respectively, than those of the wild-type EGD-e. At 37˚C, there were no 
significant differences in growth rates or in the maximum optical densities 
between these three genotypes. 
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The growth of Δlmo0866 was prevented at 3˚C (Fig. 2). In 3.5% ethanol, 
the mean maximum growth rate of Δlmo0866 was 75% less than that of the 
wild-type EGD-e (Table 8B). In control growth conditions and in 6% NaCl, 
the mean growth rate of Δlmo0866 was 17% and 14% lower, respectively, 
than that of the wild-type, whereas at 42.5˚C, the mean growth rate of 
Δlmo0866 was increased by 22%. 

 There was no detectable growth of Δlmo1450 at 42.5˚C and at pH 9.4 
(Fig. 2). At 3˚C and in 5 mM H2O2, the growth of this mutant was restricted. 
At pH 5.6, in 6% NaCl, in 3.5% ethanol, and in the control, the mean growth 
rate of Δlmo1450 was 20%, 29%, 50%, and 41%, respectively, less than that 
of the wild-type EGD-e (Table 8B).  

Deletion of lmo1722 resulted in no detectable growth at 3˚C (Fig. 2, Table 
8B). The mean growth rate of Δlmo1722 was increased by 22% and 25% at 
42.5°C and in 3.5% ethanol, respectively, and decreased by 10% in control 
condition. The growth of Δlmo1246 was similar to that of the wild-type EGD-
e under all the conditions tested. From cultures of the wild-type EGD-e and  

Table 8A. Average maximum growth rates of Listeria      
monocytogenes EGD-e and the flagellar gene        
deletion mutants EGD-eΔflhA and EGD-eΔmotA        
at 37˚C and 3˚C. Adopted from III. 

 Growth rate ± SD (OD600 units/h) 
Growth condition EGD-e EGD-eΔflhA EGD-eΔmotA 
37˚C, control 0.47±0.007 0.45±0.02 0.46±0.03 
3˚C 0.04±0.002 0.03±0.001* 0.03±0.002* 

*Significant difference (Student’s t-test, P<0.001) compared with 
the corresponding value of the wild-type EGD-e. 
 

Table 8B. Average maximum growth rates of Listeria monocytogenes EGD-e and the 
DEAD-box RNA helicase gene deletion mutants Δlmo0866, Δlmo1246, 
Δlmo1450 and Δlmo1722 under different growth conditions. Adopted from VI 
and V. 

 Growth rate ± SD (OD600 units/h) 
Growth condition EGD-e Δlmo0866 Δlmo1246 Δlmo1450 Δlmo1722 
37˚C, control 0.29±0.004 0.24±0.006* 0.28±0.007 0.17±0.004* 0.26±0.006* 
3˚C 0.12±0.009 0.00±0.002* 0.09±0.003* 0.01±0.001* 0.00±0.000* 
42.5˚C 0.09±0.004 0.11±0.003* 0.10±0.003 0.01±0.001* 0.11±0.003* 
pH 5.6 0.05±0.002 0.05±0.005 0.05±0.003 0.04±0.005* 0.05±0.002 
pH 9.4 0.07±0.014 0.05±0.006 0.06±0.006 0.02±0.023 0.05±0.006 
6% NaCl 0.07±0.002 0.06±0.003*  0.07±0.001 0.05±0.004* 0.07±0.001 
3.5% ethanol 0.04±0.002 0.01±0.004* 0.04±0.003 0.02±0.001* 0.05±0.001* 
5 mM H2O2 0.21±0.041 0.17±0.015 0.21±0.015 0.02±0.019* 0.22±0.013 

*Significant difference (Student’s t-test, P<0.001) compared with the corresponding value of the 
wild-type EGD-e. 
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 Growth of Listeria monocytogenes EGD-e and the DEAD-box RNA helicase gene Fig. 2.
deletion mutants Δlmo0866, Δlmo1246, Δlmo1450, and Δlmo1722 in BHI broth at 37°C (A), 3°C 
(B), 42.5°C (C), pH 5.6 (D), pH 9.4 (E), in 6% NaCl (F), 3.5% ethanol (G), and 5mM H2O2 (H). 
The OD600 was monitored at 15-min intervals for 48 h (A, C-H) or at 1-h intervals for three weeks 
(B). The data shown represent median OD600 values of four (G) and five (A–F, H) independent 
cultures. The error bars indicate the range of the replicate cultures. Adopted from IV and V. 
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 Temperature range of growth of the wild-type Listeria monocytogenes EGD-e and Fig. 3.
the DEAD-box RNA helicase gene deletion mutant strains Δlmo0866, Δlmo1246, Δlmo1450, and 
Δlmo1722. Mean minimum and maximum growth temperatures were examined with five replicate 
cultures of each strain, by growing the strains in tryptic soy agar containing 1.5% agar for three 
weeks and tryptic soy broth solidified with 2.5% agar for 48 h, respectively, in a Gradiplate W10 
temperature gradient incubator at temperature ranges from 1.0°C to 9.5°C, from 8.7°C to 16.8°C, 
and from 39.1°C to 45.6°C. Significant differences (paired t-test, P<0.05) in minimum and 
maximum growth temperatures compared to that of the wild-type EGD-e are indicated by an 
asterisk. Derived from IV and V. 

all six deletion mutant strains with the same OD600 values, similar total cell 
numbers were determined by plating. 

Growth curves of the Δlmo0866c complementation strain at 3°C and in 
3.5% ethanol, Δlmo1450c complementation strain at 3°C, at 42.5°C, at pH 
9.4, and in 5 mM H2O2, and Δlmo1722c complementation strain at 3°C were 
similar to that of the EGD-epPL2 control strain. 

Minimum growth temperatures of Δlmo0866, Δlmo1450, and Δlmo1722, 
and maximum growth temperatures of Δlmo0866 and Δlmo1450 differed 
significantly from that of the wild-type EGD-e (Fig. 3). After 21 days in a 
temperature gradient incubator, the minimum growth temperatures of  
Δlmo0866, Δlmo1450, and Δlmo1722 were 5.1°C, 4.9°C and 8.8°C higher, 
respectively, than that of the wild-type EGD-e. Following 48 h incubation, 
maximum growth temperatures of Δlmo0866 and Δlmo1450 were 0.6°C 
higher and 0.6°C lower, respectively, than the maximum growth temperature 
of the wild-type EGD-e. The maximum growth temperatures of Δlmo0866c 
and Δlmo1450c complementation strains were restored to the wild-type 
value.  

5.4.3 Motility (III, IV) 
The wild-type EGD-e and Δlmo1246 were motile in semi-solid agar plates at 
25°C and at 3°C. The diameter of the corona of growth around the 
inoculation point of Δlmo1722 on the semi-solid agar plate at 25°C was 



Results 

48 

approximately half of that of the wild-type EGD-e. The motility of Δlmo1722 
could not be evaluated at 3°C because of growh inhibition. At 37°C, the wild-
type EGD-e, Δlmo1246, and Δlmo1722 were non-motile. EGD-eΔflhA, EGD-
eΔmotA, Δlmo0866, and Δlmo1450 were non-motile under all the conditions 
tested. The motilities of Δlmo0866c, Δlmo1450c, and Δlmo1722c 
complementation strains were restored to the wild-type level.  
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6 DISCUSSION  

6.1 Tonsils of pigs and raw fish as a potential source of 
contamination of pork and fish processing plants by L. 
monocytogenes (I, II) 

The figure of 14% of pigs carrying L. monocytogenes in their tonsils is in 
agreement with a previous Finnish study showing a carrier rate of 12% in 
tonsils of pigs slaughtered at low-capacity slaughterhouses (Autio et al., 
2000). In the present study, the prevalence was significantly higher in 
fattening pigs (22%) than in sows (6%). Even higher prevalences, 32% and 
45%, were reported in fattening pig tonsils in Germany and former 
Yugoslavia, respectively (Buncic, 1991; Fredriksson-Ahomaa et al., 2009). 
The 4% prevalence in raw fish falls within the 0-50% range of previous 
studies (Ben Embarek, 1994; Autio et al., 1999; Nørrung et al., 1999; 
Fonnesbech Vogel et al., 2001; Norton et al., 2001; Hoffman et al., 2003). 
The occurrence in pigs is at least partly attributable to husbandry and feeding 
practices (Skovgaard & Nørrung, 1989; Buncic, 1991; Hellström et al., 2010) 
and that in fish to water quality (Ben Embarek, 1994). The differences in 
prevalence between fattening pigs and sows may result from acquired 
resistance or immunity of sows to this pathogen, since they are older at 
slaughtering than fattening pigs. 

The totals of 24 and nine different PFGE types in pig and fish samples, 
respectively, demonstrate the high genetic diversity of L. monocytogenes and 
suggests that a wide range of strains enters pig slaughterhouses and fish 
processing plants. Clearly, raw material serves as a potential source of L. 
monocytogenes contamination of pork and fish entering the food chain. 
When pig tonsils are removed, the pathogen can spread from the tonsils to 
the pluck set and carcass. During evisceration of fish, L. monocytogenes can 
spread from gills, the most heavily contaminated part (Miettinen & 
Wirtanen, 2005). Moreover, L. monocytogenes in these raw materials can 
contaminate equipment in the processing chain.  

6.2 Raw fish as a potential source in contamination of fish 
products by L. monocytogenes (II) 

In this study, identical L. monocytogenes PFGE and serotypes were found 
from raw and processed fish as also demonstrated by Fonnesbech Vogel et al. 
(2001) in Denmark and Di Ciccio et al. (2012) in Italy. The excistence of the 
same PFGE type both in raw and cold-smoked fish can be attributed to 
persistence of strains that entered the plant along with raw material and 
contaminated the final products via the processing environment, or to the 
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initial contaminant’s survival of a non-listericidal process through to the final 
product. Nevertheless, the same PFGE type in the final product may also 
have originated from a source other than raw fish (Autio et al., 2002).  

Contamination of fish products has been reported to occur mainly during 
the processing stage and primarily by endemic L. monocytogenes strains that 
may have persisted in plants for years (Ericsson et al., 1997; Autio et al., 
1999; Fonnesbech Vogel et al., 2001). Our results support the hypothesis that 
certain L. monocytogenes strains entering the plants along with raw material 
may contaminate the processing environment and persist there, causing 
recurrent contamination of the final products via processing machines. 

6.3 The role of flhA and motA in cold tolerance of L. 
monocytogenes (III) 

In this study, the role of flhA and motA, encoding FlhA and MotA needed for 
temperature-dependent synthesis of flagella (Dons et al., 1992; Kathariou et 
al., 1995), in cold tolerance of L. monocytogenes was examined. The 
decreases in growth rates and maximum optical densities of the flagella- 
deficient and non-motile deletion mutant strains EGD-eΔflhA and EGD-
eΔmotA under cold stress conditions, compared to those of the wild-type 
EGD-e, confirm that FlhA and MotA have roles in cold-temperature growth 
of L. monocytogenes. This conclusion was supported by the clearly increased 
transcription levels of flhA and motA under cold stress conditions compared 
to control values. How flhA and motA support the growth of L. 
monocytogenes at low temperatures is unknown. It may be that motile 
flagella are needed for optimal cold stress response, but these genes might 
also have other, yet undescribed functions in cold tolerance of this species. 

6.4 The role of lmo0866, lmo1246, lmo1450, and lmo1722 in 
the stress tolerance of L. monocytogenes (IV, V) 

DEAD-box proteins are conserved RNA helicases present in most living 
organisms and associated with various aspects of RNA metabolism 
(Silverman et al., 2003; Cordin et al., 2006; Fairman-Williams et al., 2010; 
Linder & Jankowsky, 2011). The best known functions of DEAD-box proteins 
include separation of short duplex regions of RNA (helicase activity), and 
chaperone activity that facilitates native folding of structured RNAs 
(Jarmoskaite & Russell, 2011). Presumably due to the increased stability of 
RNA secondary structures at low temperatures, inactivity of DEAD-box 
proteins has been linked to cold sensitivity in some bacteria (Charollais et al., 
2004; Hunger et al., 2006; Pandiani et al., 2010; Palonen et al., 2012). 
DEAD-box proteins have also been reported to contribute to heat, alkali, and 
oxidative stress tolerance in Bacillus cereus (Pandiani et al., 2011). The 
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increased minimum growth temperature of the deletion mutant Δlmo0866, 
its inhibited growth at 3˚C and restricted growth rate in 3.5% ethanol suggest 
that Lmo0866 has supportive roles in growth of L. monocytogenes EGD-e 
under both cold and ethanol stress conditions. The decreased maximum 
growth temperature and increased growth rate of Δlmo0866 at 42.5˚C 
indicate that Lmo0866 represses growth under heat stress. The findings were 
confirmed when complementation of the deletion restored the maximum 
growth temperature and growth of Δlmo0866 at 3˚C and 3.5% ethanol to the 
wild-type level. The slightly restricted growth of Δlmo0866 compared to the 
wild-type EGD-e at pH 9.4 and in 6% NaCl, but also in control growth 
condition, suggests no specific role for Lmo0866 under alkali and osmotic 
stresses.  

The observed growth characteristics of Δlmo1450 at 3˚C, at 42.5˚C, at pH 
9.4, and in 5 mM H2O2 indicate an important role for Lmo1450 under cold, 
heat, alkali, and oxidative stress condition, and this was confirmed when 
complementation of the lmo1450 deletion restored the wild-type phenotype. 
The role of DEAD-box RNA helicases in heat and oxidative stress tolerance is 
confirmed by the roles of cshA, cshB, and cshC, orthologous with lmo0866, 
lmo1450, and lmo1722, respectively, in heat and oxidative stress tolerance in 
B. cereus (Pandiani et al., 2011). The slightly restricted growth of Δlmo1450 
compared to that of the wild-type EGD-e in the control condition, at pH 5.6, 
in 6% NaCl, and in 3.5% ethanol suggests that Lmo1450 has a more general 
role in growth of L. monocytogenes. 

The inhibited growth of Δlmo1722 at 3˚C, and its restoration in 
Δlmo1722c complementation strain, suggests that Lmo1722 is needed for 
growth under cold stress. This conclusion is supported by the restricted low-
temperature growth of a mutant of L. monocytogenes F2356 carrying a 
transposon insertion in its lmo1722 homologue (Azizoglu & Kathariou, 
2010a). The effect of slightly increased growth rate of Δlmo1722 at 42.5˚C 
was not confirmed by altered maximum growth temperature or transcript 
level of lmo1722 at 42.5˚C, so it may be concluded that the role of Lmo1722 
under heat stress is not significant. A further test of the growth of Δlmo1722 
under ethanol stress (data not shown) suggests that its slightly increased 
growth rate in 3.5% ethanol was not specific to ethanol stress. This study and 
the previous study by Azizoglu and Kathariou (2010a) show that Lmo1722 
has an important role in growth of L. monocytogenes under cold stress and is 
not associated with heat, pH, osmotic, ethanol, or oxidative stress tolerance. 
This differentiates Lmo1722 from Lmo0866 and Lmo1450, both of which 
play roles in tolerance to several stresses. 

The negligible role of lmo1246 in low-temperature growth, and the 
identical growth of the wild type and Δlmo1246 under all the other 
conditions tested, indicate that Lmo1246 has no role in the tolerance of L. 
monocytogenes EGD-e to temperature, pH, osmotic, ethanol, or oxidative 
stress. Similarly, the DEAD-box RNA helicase CshD of B. cereus, containing 
the conserved carboxy-terminal domain DpbA present also in Lmo1246 and 
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not found in the other DEAD-box RNA helicases of L. monocytogenes or B. 
cereus, has no role in temperature, pH, or oxidative stress tolerance 
(Pandiani et al., 2010, 2011). Further studies are needed to reveal if Lmo1246 
is complementary to the paralogous DEAD-box RNA helicases or if it has a 
role in growth of L. monocytogenes under other stresses. 

In cold conditions, the relative expression of DEAD-box RNA helicase 
genes of L. monocytogenes increased in a comparable manner to that of their 
counterparts in B. cereus, which showed higher transcript levels at 10˚C than 
at 37˚C (Pandiani et al., 2010). Similarly, Chan et al. (2007) showed that the 
expression of the lmo0866, lmo1450, and lmo1722 homologues of L. 
monocytogenes 10403S increased at low temperatures. Moreover, transcript 
levels of lmo0866 and lmo1246 decreased under osmotic stress and those of 
lmo1246, lmo1450, and lmo1722 increased under ethanol stress, compared to 
the transcript levels of controls. Our findings are supported by the lack of 
significant changes in the expression of DEAD-box RNA helicase genes of 
alkali stressed strain 10403S (Giotis et al., 2010) and the decreased 
transcription levels of lmo0866 3 min after heat shock without any 
subsequent change in the expression of DEAD-box RNA helicase genes (van 
der Veen et al., 2007). Thus, tolerance of L. monocytogenes to cold stress, 
associated with DEAD-box RNA helicase genes, is likely regulated at the 
transcriptional level, whereas lmo0866- or lmo1450-associated tolerance to 
heat, alkali, ethanol, or oxidative stress is likely controlled through another 
mechanism. Under heat, alkali, ethanol, and oxidative stresses, the 
expression of lmo0866 and lmo1450 may be controlled at a translational or 
post-translational level, a well-known phenomenon in the regulation of RNA 
helicase activity in eucaryotes but yet unknown in bacteria (Owttrim, 2006).  

6.5 Association between motility and cold tolerance of L. 
monocytogenes (III, IV) 

No motility was detected in EGD-eΔflhA and EGD-eΔmotA with reduced 
tolerance to cold stress, and cold-sensitive mutants Δlmo0866 and 
Δlmo1450. In cold-sensitive Δlmo1722, motility was restricted to about half 
of that of the wild-type EGD-e. Deletion of lmo1246 did not affect motility 
and had a negligible effect on the cold tolerance of strain EGD-e. These 
results suggest an association between bacterial motility and the ability to 
grow at low temperatures. Palonen et al. (2011) showed reduced growth and 
motility of the cheA chemotaxis gene inactivation mutant strain of Yersinia 
pseudotuberculosis at low temperature, which supports this hypothesis. It 
seems that in addition to flagellin gene flhA and flagellar motor gene motA, 
DEAD-box RNA helicase-encoding genes lmo0866, lmo1450, and lmo1722 
are needed for synthesis or function of flagella, which is needed for optimal 
cold stress response of L. monocytogenes. Moreover, lmo0866, lmo1450, and 
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lmo1722 likely affect cold stress tolerance of L. monocytogenes through an 
additional, currently unknown mechanism. 
 
 



conclusions 

54 

7 CONCLUSIONS 

1. Pigs and raw fish were shown to be potential sources of contamination 
of slaughterhouses and processing plants by wide variety of L. 
monocytogenes strains. The strains entering the plants may directly or 
indirectly contaminate the processing environment. 

 
2. Similar PFGE types detected in raw and processed fish indicate that L. 

monocytogenes isolates originating from raw fish may directly or 
indirectly contaminate final fish products. L. monocytogenes 
originating from raw fish, and entering and persisting in the 
processing plant, may contaminate the final products via the 
processing environment. Alternatively, L. monocytogenes in raw fish 
may survive non-listericidal processes, resulting in contamination of 
final product. 

 
3. The flagellar biosynthesis gene flhA and flagellar motor protein-

encoding gene motA played roles in cold tolerance of L. 
monocytogenes EGD-e. This suggests that FlhA and MotA are needed 
for the optimal growth of L. monocytogenes under cold stress.  
 

4. Putative DEAD-box RNA helicase-encoding genes lmo0866, lmo1450, 
and lmo1722 played important roles in the tolerance of L. 
monocytogenes EGD-e to cold, alkali, ethanol, and oxidative stress. 
Gene lmo0866 was needed for the wild-type growth under cold and 
ethanol stress conditions, and its deletion enhanced growth under 
heat stress conditions. Gene lmo1450 seems to play a universal role in 
the growth of strain EGD-e, and it may have roles in cold, heat, alkali, 
and oxidative stress tolerance. Gene lmo1722 played a role solely in 
cold tolerance. Whether lmo1246 plays a role in growth under 
extremely cold conditions warrants further investigation. None of the 
putative DEAD-box RNA helicase genes had a role in acid or osmotic 
stress tolerance. These results suggest that DEAD-box RNA helicases 
Lmo0866, Lmo1450, and Lmo1722 have roles in growth of L. 
monocytogenes under cold, heat, alkali, ethanol, and oxidative stress 
conditions. 
 

5. The motility of cold-sensitive, flagellar gene deletion mutants EGD-
eΔflhA and EGD-eΔmotA, and DEAD-box RNA helicase gene deletion 
mutants Δlmo0866, Δlmo1450, and Δlmo1722 was restricted. This 
suggests that cold tolerance and motility of L. monocytogenes EGD-e 
are linked.  
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